On-line Building Energy Optimization using Deep Reinforcement Learning

نویسندگان

  • Elena Mocanu
  • Decebal Constantin Mocanu
  • Phuong H. Nguyen
  • Antonio Liotta
  • Michael E. Webber
  • Madeleine Gibescu
  • Johannes G. Slootweg
چکیده

Unprecedented high volumes of data are becoming available with the growth of the advanced metering infrastructure. These are expected to benefit planning and operation of the future power system, and to help the customers transition from a passive to an active role. In this paper, we explore for the first time in the smart grid context the benefits of using Deep Reinforcement Learning, a hybrid type of methods that combines Reinforcement Learning with Deep Learning, to perform on-line optimization of schedules for building energy management systems. The learning procedure was explored using two methods, Deep Q-learning and Deep Policy Gradient, both of them being extended to perform multiple actions simultaneously. The proposed approach was validated on the large-scale Pecan Street Inc. database. This highly-dimensional database includes information about photovoltaic power generation, electric vehicles as well as buildings appliances. Moreover, these on-line energy scheduling strategies could be used to provide realtime feedback to consumers to encourage more efficient use of electricity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm

: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...

متن کامل

Learning Complex Swarm Behaviors by Exploiting Local Communication Protocols with Deep Reinforcement Learning

Swarm systems constitute a challenging problem for reinforcement learning (RL) as the algorithm needs to learn decentralized control policies that can cope with limited local sensing and communication abilities of the agents. Although there have been recent advances of deep RL algorithms applied to multi-agent systems, learning communication protocols while simultaneously learning the behavior ...

متن کامل

Using Deep Q-Learning to Control Optimization Hyperparameters

We present a novel definition of the reinforcement learning state, actions and reward function that allows a deep Q-network (DQN) to learn to control an optimization hyperparameter. Using Q-learning with experience replay, we train two DQNs to accept a state representation of an objective function as input and output the expected discounted return of rewards, or q-values, connected to the actio...

متن کامل

Integration of Deep Learning Algorithms and Bilateral Filters with the Purpose of Building Extraction from Mono Optical Aerial Imagery

The problem of extracting the building from mono optical aerial imagery with high spatial resolution is always considered as an important challenge to prepare the maps. The goal of the current research is to take advantage of the semantic segmentation of mono optical aerial imagery to extract the building which is realized based on the combination of deep convolutional neural networks (DCNN) an...

متن کامل

Optimal mathematical operation of a hybrid microgrid in islanded mode for improving energy efficiency using deep learning and demand side management

Deep learning method is used to predict the future value of load demand. Based on obtained results, a new model based on the forward-backward load shifting and unnecessary load shedding is presented. As well, to increase energy efficiency, excess renewable energy has been used to produce green hydrogen. For this purpose, GAMS optimization software has been used for optimal operation of the micr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1707.05878  شماره 

صفحات  -

تاریخ انتشار 2017