Aging in a very short-lived nematode.
نویسندگان
چکیده
Aging has been characterised in detail in relatively few animal species. Here we describe the aging process in free-living adults of the parasitic nematode Strongyloides ratti. We find that the phenomenology of aging in S. ratti free-living females, resembles that of the short-lived free-living nematode Caenorhabditis elegans, except that it unfolds far more rapidly. The mean (3.0 +/- 0.1 days) and maximum (4.5 +/- 0.8 days) lifespans of free-living S. ratti females are approximately one quarter of equivalent values for C. elegans. Demographic senescence (a hallmark of aging) was observed in free-living S. ratti, with a mortality rate doubling time of 0.8 +/- 0.1 days (females), compared with 2.0 +/- 0.3 in C. elegans. S. ratti lifetime fertility and lifespan were affected by temperature, and there is an age-related decline in feeding rate and movement, similar to C. elegans, but occurring more quickly. Gut autofluorescence (lipofuscin) also increased with age in S. ratti free-living females, as in aging C. elegans. These findings show that the extreme brevity of life in free-living S. ratti adults, the shortest-lived nematode described to date, is the consequence of rapid aging, rather than some other, more rapid and catastrophic life-shortening pathology.
منابع مشابه
Strongyloides ratti: A Nematode with Extraordinary Plasticity in Aging
Aging has been characterized in detail in relatively few animal species. Here we describe the aging process of a nematode with an unusual life-cycle, Strongyloides ratti. This organism has distinct parasitic and free-living reproductive adult forms, which are genetically identical. S. ratti exhibits a remarkably high degree of phenotypic plasticity of aging: the maximum lifespan of parasitic ad...
متن کاملCorrection: Uncoupling of Longevity and Telomere Length in C. elegans
The nematode Caenorhabditis elegans, after completing its developmental stages and a brief reproductive period, spends the remainder of its adult life as an organism consisting exclusively of post-mitotic cells. Here we show that telomere length varies considerably in clonal populations of wild-type worms, and that these length differences are conserved over at least ten generations, suggesting...
متن کاملWidespread Proteome Remodeling and Aggregation in Aging C. elegans
Aging has been associated with a progressive decline of proteostasis, but how this process affects proteome composition remains largely unexplored. Here, we profiled more than 5,000 proteins along the lifespan of the nematode C. elegans. We find that one-third of proteins change in abundance at least 2-fold during aging, resulting in a severe proteome imbalance. These changes are reduced in the...
متن کاملThe influence of metabolic rate on longevity in the nematode Caenorhabditis elegans.
Much of the recent interest in aging research is due to the discovery of genes in a variety of model organisms that appear to modulate aging. A large amount of research has focused on the use of such long-lived mutants to examine the fundamental causes of aging. While model organisms do offer many advantages for studying aging, it also critical to consider the limitations of these systems. In p...
متن کاملEvolution of male longevity bias in nematodes.
Many animal species exhibit sex differences in aging. In the nematode Caenorhabditis elegans, under conditions that minimize mortality, males are the longer-lived sex. In a survey of 12 independent C. elegans isolates, we find that this is a species-typical character. To test the hypothesis that the C. elegans male longevity bias evolved as a consequence of androdioecy (having males and hermaph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental gerontology
دوره 39 9 شماره
صفحات -
تاریخ انتشار 2004