Evolution of Fuzzy Rule Based Classifiers
نویسنده
چکیده
The paper presents an evolutionary approach for generating fuzzy rule based classifier. First, a classification problem is divided into several two-class problems following a fuzzy unordered class binarization scheme; next, a fuzzy rule is evolved (not only the condition but the fuzzy sets are evolved (tuned) too) for each two-class problem using a Michigan iterative learning approach; finally, the evolved fuzzy rules are integrated using the fuzzy round robin class binarization scheme. In particular, heaps encoding scheme is used for evolving the fuzzy rules along with a set of special genetic operators (variable length crossover, gene addition and gene deletion). Experiments are conducted with different public available data sets.
منابع مشابه
Fuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کاملFuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کاملSUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS
This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...
متن کاملA QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES
Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only considers both accuracy and generalization criteria in a single objective fu...
متن کاملEvolving Fuzzy Rule Based Classifiers with GA-P: A Grammatical Approach
Genetic Programming can be used to evolve Fuzzy Rulebased classifiers [7]. Fuzzy GP depends on a grammar defining valid expressions of fuzzy classifiers, and guarantees that all individuals in the population are valid instances of it all along the evolution process. This is accomplished by restricting crossover and mutation so that they only take place at points of the derivation tree represent...
متن کاملFault Detection of Bearings Using a Rule-based Classifier Ensemble and Genetic Algorithm
This paper proposes a reduct construction method based on discernibility matrix simplification. The method works with genetic algorithm. To identify potential problems and prevent complete failure of bearings, a new method based on rule-based classifier ensemble is presented. Genetic algorithm is used for feature reduction. The generated rules of the reducts are used to build the candidate base...
متن کامل