Localization and interactions of teichoic acid synthetic enzymes in Bacillus subtilis.

نویسندگان

  • Alex Formstone
  • Rut Carballido-López
  • Philippe Noirot
  • Jeffery Errington
  • Dirk-Jan Scheffers
چکیده

The thick wall of gram-positive bacteria is a polymer meshwork composed predominantly of peptidoglycan (PG) and teichoic acids, both of which have a critical function in maintenance of the structural integrity and the shape of the cell. In Bacillus subtilis 168 the major teichoic acid is covalently coupled to PG and is known as wall teichoic acid (WTA). Recently, PG insertion/degradation over the lateral wall has been shown to occur in a helical pattern. However, the spatial organization of WTA assembly and its relationship with cell shape and PG assembly are largely unknown. We have characterized the localization of green fluorescent protein fusions to proteins involved in several steps of WTA synthesis in B. subtilis: TagB, -F, -G, -H, and -O. All of these localized similarly to the inner side of the cytoplasmic membrane, in a pattern strikingly similar to that displayed by probes of nascent PG. Helix-like localization patterns are often attributable to the morphogenic cytoskeletal proteins of the MreB family. However, localization of the Tag proteins did not appear to be substantially affected by single disruption of any of the three MreB homologues of B. subtilis. Bacterial and yeast two-hybrid experiments revealed a complex network of interactions involving TagA, -B, -E, -F, -G, -H, and -O and the cell shape determinants MreC and MreD (encoded by the mreBCD operon and presumably involved in the spatial organization of PG synthesis). Taken together, our results suggest that, in B. subtilis at least, the synthesis and export of WTA precursors are mediated by a large multienzyme complex that may be associated with the PG-synthesizing machinery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studies of the genetics, function, and kinetic mechanism of TagE, the wall teichoic acid glycosyltransferase in Bacillus subtilis 168.

The biosynthetic enzymes involved in wall teichoic acid biogenesis in gram-positive bacteria have been the subject of renewed investigation in recent years with the benefit of modern tools of biochemistry and genetics. Nevertheless, there have been only limited investigations into the enzymes that glycosylate wall teichoic acid. Decades-old experiments in the model gram-positive bacterium, Baci...

متن کامل

The Amino terminus of Bacillus subtilis TagB possesses separable localization and functional properties.

The function(s) of gram-positive wall teichoic acid is emerging with recent findings that it is an important virulence factor in the pathogen Staphylococcus aureus and that it is crucial to proper rod-shaped cell morphology of Bacillus subtilis. Despite its importance, our understanding of teichoic acid biosynthesis remains incomplete. The TagB protein has been implicated in the priming step of...

متن کامل

Wall teichoic acid polymers are dispensable for cell viability in Bacillus subtilis.

An extensive literature has established that the synthesis of wall teichoic acid in Bacillus subtilis is essential for cell viability. Paradoxically, we have recently shown that wall teichoic acid biogenesis is dispensable in Staphylococcus aureus (M. A. D'Elia, M. P. Pereira, Y. S. Chung, W. Zhao, A. Chau, T. J. Kenney, M. C. Sulavik, T. A. Black, and E. D. Brown, J. Bacteriol. 188:4183-4189, ...

متن کامل

Wall Teichoic Acid Glycosylation

The biosynthetic enzymes involved in wall teichoic acid biogenesis in Grampositive bacteria have been the subject of renewed investigation in recent years with the benefit of modem tools of biochemistry and genetics. Nevertheless, there have been only limited investigations into the enzymes that glycosylate wall teichoic acid. Decades-old experiments in the model Gram-positive bacterium, Bacill...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 190 5  شماره 

صفحات  -

تاریخ انتشار 2008