The Spartan Ortholog Maternal Haploid Is Required for Paternal Chromosome Integrity in the Drosophila Zygote

نویسندگان

  • Laetitia Delabaere
  • Guillermo A. Orsi
  • Laure Sapey-Triomphe
  • Béatrice Horard
  • Pierre Couble
  • Benjamin Loppin
چکیده

The animal sperm nucleus is characterized by an extremely compacted organization of its DNA after the global replacement of histones with sperm-specific nuclear basic proteins, such as protamines. In the absence of DNA repair activity in the mature gamete, the integrity of the paternal genome is potentially challenged by the unique topological constraints exerted on sperm DNA. In addition, the maintenance of paternal DNA integrity during the rapid remodeling of sperm chromatin at fertilization has long been regarded as a maternal trait. However, little is known about the nature of the egg proteins involved in this essential aspect of zygote formation. We had previously characterized the unique phenotype of the classical Drosophila maternal effect mutant maternal haploid (mh), which specifically affects the integration of paternal chromosomes in the zygote. Here we show that MH is the fly ortholog of the recently identified human DVC1/Spartan protein, a conserved regulator of DNA damage tolerance. Like Spartan, MH protein is involved in the resistance to UV radiation and recruits the p97/TER94 segregase to stalled DNA replication forks in somatic cells. In the zygote, we found that the mh phenotype is consistent with perturbed or incomplete paternal DNA replication. Remarkably, however, the specific accumulation of MH in the male pronucleus before the first S phase suggests that this maternal protein is required to maintain paternal DNA integrity during nuclear decondensation or to set the paternal chromatin landscape in preparation of the first zygotic cycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maternal Haploid, a Metalloprotease Enriched at the Largest Satellite Repeat and Essential for Genome Integrity in Drosophila Embryos.

The incorporation of the paternal genome into the zygote during fertilization requires chromatin remodeling. The maternal haploid (mh) mutation in Drosophila affects this process and leads to the formation of haploid embryos without the paternal genome. mh encodes the Drosophila homolog of SPRTN, a conserved protease essential for resolving DNA-protein cross-linked products. Here we characteriz...

متن کامل

Wolbachia-induced delay of paternal chromatin condensation does not prevent maternal chromosomes from entering anaphase in incompatible crosses of Drosophila simulans.

The behavior of parental chromosomes during the first mitosis of Drosophila simulans zygotes obtained from unidirectional incompatible crosses is described and it is demonstrated that the condensation of parental chromatin complements was asynchronous. The timing of paternal chromatin condensation appeared to be delayed in these embryos, so that condensed maternal chromosomes and entangled prop...

متن کامل

Prenatal diagnosis and normal outcome of a 46,XX/46,XY chimera: a case report.

The phenotypic spectrum of 46,XX/46,XY chimeric patients is variable. It ranges from normal male or female genitalia to different degrees of ambiguous genitalia. Chimerism results from the amalgamation of two different zygotes in a single embryo, whereas mosaicism results from a mitotic error in a single zygote. Several other mechanisms resulting in a chimera have been discussed in the literatu...

متن کامل

The Deadbeat Paternal Effect of Uncapped Sperm Telomeres on Cell Cycle Progression and Chromosome Behavior in Drosophila melanogaster.

Telomere-capping complexes (TCCs) protect the ends of linear chromosomes from illegitimate repair and end-to-end fusions and are required for genome stability. The identity and assembly of TCC components have been extensively studied, but whether TCCs require active maintenance in nondividing cells remains an open question. Here we show that Drosophila melanogaster requires Deadbeat (Ddbt), a s...

متن کامل

Quantitative microscopy uncovers ploidy changes during mitosis in live Drosophila embryos and their effect on nuclear size

Time-lapse microscopy is a powerful tool to investigate cellular and developmental dynamics. In Drosophila melanogaster, it can be used to study division cycles in embryogenesis. To obtain quantitative information from 3D time-lapse data and track proliferating nuclei from the syncytial stage until gastrulation, we developed an image analysis pipeline consisting of nuclear segmentation, trackin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2014