m at h . A C ] 2 7 Ju l 2 00 7 ASCENT OF MODULE STRUCTURES , VANISHING OF EXT , AND EXTENDED MODULES

نویسنده

  • Roger Wiegand
چکیده

Let (R, m) and (S, n) be commutative Noetherian local rings, and let φ : R→ S be a flat local homomorphism such that mS = n and the induced map on residue fields R/m→ S/n is an isomorphism. Given a finitely generated R-module M , we show that M has an S-module structure compatible with the given R-module structure if and only if Ext R (S, M) is finitely generated as an R-module for each i ≥ 1. We say that an S-module N is extended if there is a finitely generated R-module M such that N ∼= S⊗R M . Given a short exact sequence 0→ N1 → N → N2 → 0 of finitely generated S-modules, with two of the three modules N1, N, N2 extended, we obtain conditions forcing the third module to be extended. We show that every finitely generated module over the Henselization of R is a direct summand of an extended module, but that the analogous result fails for the m-adic completion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

m at h . A C ] 1 9 A ug 2 00 8 ASCENT OF MODULE STRUCTURES , VANISHING OF EXT , AND EXTENDED MODULES

Let (R, m) and (S, n) be commutative Noetherian local rings, and let φ : R→ S be a flat local homomorphism such that mS = n and the induced map on residue fields R/m→ S/n is an isomorphism. Given a finitely generated R-module M , we show that M has an S-module structure compatible with the given R-module structure if and only if Ext R (S,M) = 0 for each i ≥ 1. We say that an S-module N is exten...

متن کامل

Of Module Structures , Vanishing of Ext , and Extended Modules

Let (R, m) and (S, n) be commutative Noetherian local rings, and let φ : R→ S be a flat local homomorphism such that mS = n and the induced map on residue fields R/m→ S/n is an isomorphism. Given a finitely generated R-module M , we show that M has an S-module structure compatible with the given R-module structure if and only if Ext R (S,M) = 0 for each i ≥ 1. We say that an S-module N is exten...

متن کامل

On a Finitistic Cotilting-type Duality

Let R and S be arbitrary associative rings. Given a bimodule RWS , we denote by ∆? and Γ? the functors Hom?(−, W ) and Ext?(−, W ), where ? = R or S. We say that RWS is a finitistic weakly cotilting bimodule (briefly FWC) if for each module M cogenerated by W , finitely generated or homomorphic image of a finite direct sum of copies of W , ΓM = 0 = Ext(M, W ). We are able to describe, on a larg...

متن کامل

On the Adams Spectral Sequence for R-modules

We consider the Adams Spectral Sequence for R-modules based on commutative localized regular quotient ring spectra of a commutative S-algebra R in the sense of Elmendorf, Kriz, Mandell, May and Strickland. The formulation of this spectral sequence is similar to the classical case, and we reduce to algebra involving the cohomology of certain ‘brave new Hopf algebroids’ E ∗ E. In order to work ou...

متن کامل

Homological Algebra and Set Theory

Assuming the Axiom of Constructibility, necessary and sufficient conditions are given for the vanishing of Ext\ for rings A of global dimension 1. Using Martin's Axiom, the necessity of these conditions is shown not to be a theorem of ZFC. Applications are given to abelian group theory, including a partial solution (assuming V = L) to a problem of Baer on the splitting of abelian groups. Some i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008