Lipoprotein-biomimetic nanostructure enables efficient targeting delivery of siRNA to Ras-activated glioblastoma cells via macropinocytosis
نویسندگان
چکیده
Hyperactivated Ras regulates many oncogenic pathways in several malignant human cancers including glioblastoma and it is an attractive target for cancer therapies. Ras activation in cancer cells drives protein internalization via macropinocytosis as a key nutrient-gaining process. By utilizing this unique endocytosis pathway, here we create a biologically inspired nanostructure that can induce cancer cells to 'drink drugs' for targeting activating transcription factor-5 (ATF5), an overexpressed anti-apoptotic transcription factor in glioblastoma. Apolipoprotein E3-reconstituted high-density lipoprotein is used to encapsulate the siRNA-loaded calcium phosphate core and facilitate it to penetrate the blood-brain barrier, thus targeting the glioblastoma cells in a macropinocytosis-dependent manner. The nanostructure carrying ATF5 siRNA exerts remarkable RNA-interfering efficiency, increases glioblastoma cell apoptosis and inhibits tumour cell growth both in vitro and in xenograft tumour models. This strategy of targeting the macropinocytosis caused by Ras activation provides a nanoparticle-based approach for precision therapy in glioblastoma and other Ras-activated cancers.
منابع مشابه
O26: Targeted Delivery of siRNA in a Nano-Particle Suppress Glioblastoma Stem Cells
Cancer stem cells (CSCs) are suggested as the most dominant causes of recurrence due to their permanent self-renewal and resistance to common cancer treatment in glioblastoma multiform (GBM) which is recognized as the most malignant of brain tumor. It has been indicated that Retinoblastoma-binding protein 5 (RBBP5), a main part of Mixed lineage leukemia protein-1 (MLL1), plays a significant rol...
متن کاملMultifunctional PEI-entrapped gold nanoparticles enable efficient delivery of therapeutic siRNA into glioblastoma cells.
RNA interference (RNAi) has been considered as a promising strategy for effective treatment of cancer. However, the easy degradation of small interfering RNA (siRNA) limits its extensive applications in gene therapy. For safe and effective delivery of siRNA, a novel vector system possessing excellent biocompatibility, highly efficient transfection efficiency and specific targeting properties ha...
متن کاملMechanisms of non-conventional cell death in brain tumor cells
Expression of activated Ras in glioblastoma cells induces accumulation of large phaselucent cytoplasmic vacuoles, followed by cell death. This was previously described as autophagic cell death. However, unlike autophagosomes, the Ras-induced vacuoles are not bounded by a double membrane and do not sequester organelles or cytoplasm. Moreover, they are not acidic and do not contain the autophagos...
متن کاملTumor-targeting dual peptides-modified cationic liposomes for delivery of siRNA and docetaxel to gliomas.
Combinations of drugs promoting anti-angiogenesis and apoptosis effects are meaningful for cancer therapy. In the present study, dual peptides-modified liposomes were designed by attaching two receptor-specific peptides, specifically low-density lipoprotein receptor-related protein receptor (Angiopep-2) and neuropilin-1 receptor (tLyP-1) for brain tumor targeting and tumor penetration. Vascular...
متن کاملDevelopment of siRNA payloads to target KRAS-mutant cancer.
UNLABELLED RNAi is a powerful tool for target identification and can lead to novel therapies for pharmacologically intractable targets such as KRAS. RNAi therapy must combine potent siRNA payloads with reliable in vivo delivery for efficient target inhibition. We used a functional "Sensor" assay to establish a library of potent siRNAs against RAS pathway genes and to show that they efficiently ...
متن کامل