Pure cross-diffusion models: Implications for traveling wave solutions
نویسندگان
چکیده
An analysis of traveling wave solutions of pure cross-diffusion systems, i.e., systems that lack reaction and self-diffusion terms, is presented. Using the qualitative theory of phase plane analysis the conditions for existence of different types of wave solutions are formulated. In particular, it is shown that family of wave trains is a generic phenomenon in pure cross-diffusion systems. The results can be used for construction and analysis of different mathematical models describing systems with directional movement.
منابع مشابه
Traveling Waves of Some Symmetric Planar Flows of Non-Newtonian Fluids
We present some variants of Burgers-type equations for incompressible and isothermal planar flow of viscous non-Newtonian fluids based on the Cross, the Carreau and the power-law rheology models, and on a symmetry assumption on the flow. We numerically solve the associated traveling wave equations by using industrial data and in order to validate the models we prove existence and uniqueness of ...
متن کاملTraveling Wave Solutions in Delayed Reaction Diffusion Systems with Applications to Multi-species Models
This paper is concerned with the existence of traveling wave solutions in delayed reaction diffusion systems which at least contain multi-species competition, cooperation and predator-prey models with diffusion and delays. By introducing the mixed quasimonotone condition and the exponentially mixed quasimonotone condition, we reduce the existence of traveling wave solutions to the existence of ...
متن کاملFamilies of traveling impulses and fronts in some models with cross-diffusion
An analysis of traveling wave solutions of partial differential equation (PDE) systems with cross-diffusion is presented. The systems under study fall in a general class of the classical Keller-Segel models to describe chemotaxis. The analysis is conducted using the theory of the phase plane analysis of the corresponding wave systems without a priory restrictions on the boundary conditions of t...
متن کامل"Traveling wave" solutions of FitzHugh model with cross-diffusion.
The FitzHugh-Nagumo equations have been used as a caricature of the Hodgkin-Huxley equations of neuron firing and to capture, qualitatively, the general properties of an excitable membrane. In this paper, we utilize a modified version of the FitzHugh-Nagumo equations to model the spatial propagation of neuron firing; we assume that this propagation is (at least, partially) caused by the cross-d...
متن کاملUniqueness of Monotone Mono-stable Waves for Reaction-Diffusion Equations with Time Delay
Many models in biology and ecology can be described by reaction-diffusion equations wit time delay. One of important solutions for these type of equations is the traveling wave solution that shows the phenomenon of wave propagation. The existence of traveling wave fronts has been proved for large class of equations, in particular, the monotone systems, such as the cooperative systems and some c...
متن کامل