Ultrafast heme dynamics in ferrous versus ferric cytochrome c studied by time-resolved resonance Raman and transient absorption spectroscopy.

نویسندگان

  • Michel Negrerie
  • Simona Cianetti
  • Marten H Vos
  • Jean-Louis Martin
  • Sergei G Kruglik
چکیده

Cytochrome c (Cyt c) is a heme protein involved in electron transfer and also in apoptosis. Its heme iron is bisaxially ligated to histidine and methionine side chains and both ferric and ferrous redox states are physiologically relevant, as well as a ligand exchange between internal residue and external diatomic molecule. The photodissociation of internal axial ligand was observed for several ferrous heme proteins including Cyt c, but no time-resolved studies have been reported on ferric Cyt c. To investigate how the oxidation state of the heme influences the primary photoprocesses, we performed a comprehensive comparative study on horse heart Cyt c by subpicosecond time-resolved resonance Raman and femtosecond transient absorption spectroscopy. We found that in ferric Cyt c, in contrast to ferrous Cyt c, the photodissociation of an internal ligand does not take place, and relaxation dynamics is dominated by vibrational cooling in the ground electronic state of the heme. The intermolecular vibrational energy transfer was found to proceed in a single phase with a temperature decay of approximately 7 ps in both ferric and ferrous Cyt c. For ferrous Cyt c, the instantaneous photodissociation of the methionine side chain from the heme iron is the dominant event, and its rebinding proceeds in two phases, with time constants of approximately 5 and approximately 16 ps. A mechanism of this process is discussed, and the difference in photoinduced coordination behavior between ferric and ferrous Cyt c is explained by an involvement of the excited electronic state coupled with conformational relaxation of the heme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The structure of a ferrous heme-nitro species in the binuclear heme a3/CuB center of ba3-cytochrome c oxidase as determined by resonance Raman spectroscopy.

Members of the cytochrome c oxidase family exhibit nitrite reductase activity. In this work, we have characterized a ferrous heme a3-nitro species in ba3-oxidase by resonance Raman spectroscopy. This provides the first evidence for the structure of a nitrite-bound species in the binuclear heme/copper center of cytochrome c oxidases.

متن کامل

Refolding processes of cytochrome P450cam from ferric and ferrous acid forms to the native conformation. Formations of folding intermediates with non-native heme coordination state.

Changes in heme coordination state and protein conformation of cytochrome P450(cam) (P450(cam)), a b-type heme protein, were investigated by employing pH jump experiments coupled with time-resolved optical absorption, fluorescence, circular dichroism, and resonance Raman techniques. We found a partially unfolded form (acid form) of ferric P450(cam) at pH 2.5, in which a Cys(-)-heme coordination...

متن کامل

Resonance Raman and electron paramagnetic resonance structural investigations of neutrophil cytochrome b558.

The resonance Raman spectra of neutrophil cytochrome b558 obtained upon Soret excitation indicate that the heme is low spin six-coordinate in both ferric and ferrous oxidation states; comparison with the spectra of bis-imidazole hemin suggests imidazole or imidazolate axial ligation. Minor bands attributable to vibrational motions of ring-conjugated vinyl substituents were also observed, consis...

متن کامل

Picosecond Dynamics of CN‒-Ligated Ferric Cytochrome c after Photoexcitation Using Time-resolved Vibrational Spectroscopy

The dynamics of the CN‒-ligated ferric cytochrome c (CytcCN) in D2O at 283 K following Q-band photoexcitation at 575 nm was observed using femtosecond time-resolved vibrational spectroscopy. The equilibrium vibrational spectrum of the CN stretching mode of CytcCN shows two overlapping bands: one main band (82%) at 2122 cm‒1 with 23 cm‒1 full width at half maximum (fwhm) and the other band (18%)...

متن کامل

Formation of a bis(histidyl) heme iron complex in manganese peroxidase at high pH and restoration of the native enzyme structure by calcium.

Manganese peroxidase (MnP) from Phanerochaete chrysosporium undergoes a pH-dependent conformational change evidenced by changes in the electronic absorption spectrum. This high- to low-spin alkaline transition occurs at approximately 2 pH units lower in an F190I mutant MnP when compared to the wild-type enzyme. Herein, we provide evidence that these spectral changes are attributable to the form...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 110 25  شماره 

صفحات  -

تاریخ انتشار 2006