Simulation-based Estimation Methods for Financial Time Series Models
نویسنده
چکیده
This paper overviews some recent advances on simulation-based methods of estimating time series models and asset pricing models that are widely used in finance. The simulation based methods have proven to be particularly useful when the likelihood function and moments do not have tractable forms and hence the maximum likelihood method (MLE) and the generalized method of moments (GMM) are difficult to use. They can also be useful for improving the finite sample performance of the traditional methods when financial time series are highly persistent and when the quantity of interest is a highly nonlinear function of system parameters. The simulation-based methods are classified in this paper, based on the frequentist/Bayesian split. Frequentist’s simulation-based methods cover simulated generalized method of moments (SMM), efficient method of moments (EMM), indirect inference (II), various forms of simulated maximum likelihood methods (SMLE). Asymptotic properties of these methods are discussed and asymptotic efficiency is compared. Bayesian simulation-based methods cover various MCMC algorithms. Each simulation-based method is discussed in the context of a specific financial time series model as a motivating example. The list of discussed financial time series models cover continuous time diffusion models, latent variable models, term structure models, asset pricing models, and structural models for credit risk. Finite sample problems of the exact maximum likelihood method, such as finite sample bias, are also discussed. Simulation-based bias correction methods, such as indirect inference, simulation-based median unbiased estimation, and bootstrap methods are reviewed. A nice property about these simulation-based bias correction methods is that they retains the good asymptotic properties of maximum likelihood estimation while reducing finite sample bias. ∗Yu gratefully acknowledge financial support from the Ministry of Education AcRF fund under Grant No. T206B4301-RS. †School of Economics, Singapore Management University, 90 Stamford Road, Singapore 178903; email: [email protected].
منابع مشابه
Indirect Estimation of the Parameters of Agent Based Models of Financial Markets
Agent based models take into account limited rational behaviour of individuals acting on financial markets. Explicit simulation of this behaviour and the resulting interaction of individuals provide a description of aggregate financial market time series. Although the outcomes of such simulations often exhibit similarities with real financial market time series, methods for explicit validation ...
متن کاملIndirect Estimation of the Parameters
Agent based models take into account limited rational behaviour of individuals acting on financial markets. Explicit simulation of this behaviour and the resulting interaction of individuals provide a description of aggregate financial market time series. Although the outcomes of such simulations often exhibit similarities with real financial market time series, methods for explicit validation ...
متن کاملEstimation of Value at Risk (VaR) Based On Lévy-GARCH Models: Evidence from Tehran Stock Exchange
This paper aims to estimate the Value-at-Risk (VaR) using GARCH type models with improved return distribution. Value at Risk (VaR) is an essential benchmark for measuring the risk of financial markets quantitatively. The parametric method, historical simulation, and Monte Carlo simulation have been proposed in several financial mathematics and engineering studies to calculate VaR, that each of ...
متن کاملMonitoring Financial Processes with ARMA-GARCH Model Based on Shewhart Control Chart (Case Study: Tehran Stock Exchange)
Financial surveillance is an interesting area after financial crisis in recent years. In this subject, important financial indices are monitored using control charts. Control chart is a powerful instrument for detecting assignable causes which is considerably developed in industrial and service environments. In this paper, a monitoring procedure based on Shewhart control chart is proposed to mo...
متن کاملThe effect of parameter estimation on Phase II control chart performance in monitoring financial GARCH processes with contaminated data
The application of control charts for monitoring financial processes has received a greater focus after recent global crisis. The Generelized AutoRegressive Conditional Heteroskedasticity (GARCH) time series model is widely applied for modelling financial processes. Therefore, traditional Shewhart control chart is developed to monitor GARCH processes. There are some difficulties in financial su...
متن کامل