Excellent Temperature Performance of Spherical LiFePO4/C Composites Modified with Composite Carbon and Metal Oxides
نویسندگان
چکیده
Nanosized spherical LiFePO4/C composite was synthesized from nanosized spherical FePO4 ·2H2O, Li2C2O4, aluminum oxide, titanium oxide, oxalic acid, and sucrose by binary sintering process. The phases and morphologies of LiFePO4/C were characterized using SEM, TEM, CV, EIS, EDS, and EDX as well as charging and discharging measurements. The results showed that the as-prepared LiFePO4/C composite with good conductive webs from nanosized spherical FePO4 ·2H2O exhibits excellent electrochemical performances, delivering an initial discharge capacity of 161.7 mAh·g(-1) at a 0.1 C rate, 152.4 mAh·g(-1) at a 1 C rate and 131.7 mAh·g(-1) at a 5 C rate, and the capacity retention of 99.1%, 98.7%, and 95.8%, respectively, after 50 cycles. Meanwhile, the high and low temperature performance is excellent for 18650 battery, maintaining capacity retention of 101.7%, 95.0%, 88.3%, and 79.3% at 55°C, 0°C, -10°C, and -20°C by comparison withthat of room temperature (25°C) at the 0.5 C rate over a voltage range of 2.2 V to 3.6 V, respectively.
منابع مشابه
Enhancement In Electrochemical Performance Of Advanced Battery Electrodes Using Carbon- Nanomaterial Composites
ENHANCEMENT IN ELECTROCHEMICAL PERFORMANCE OF LiFePO4-CARBONNANO COMPOSITE MATERIALS FOR LITHIUM ION BATTERIESbyKULWINDER S. DHINDSAMay 2015Advisor:Dr. Zhixian ZhouCo Advisors: Dr. Ratna Naik and Dr. Gholam-Abbas NazriMajor:Physics (Condensed Matter)Degree:Doctor of PhilosophyLiFePO4 has attracted great interest as a cathode material for lithi...
متن کاملMetal Oxide/Pt Based Nanocomposites as Electrocatalysts for Oxygen Reduction Reaction
Fuel cell is a promising choice for clean energy because of its eco-friendly system, high energy conversion efficiency and high power density. Recently, much of the research work is focused on the system of combining metal oxides to increase the durability and surface area and to reduce the cost. In this study, among the various fabrication methods, we used the precipitation method to synthesis...
متن کاملSynthesis of LiFePO4/C composite as a cathode material for lithium-ion battery by a novel two-step method
In this study, LiFePO4/C is synthesized via a novel two-step method. The first step is the synthesis of nano-sized intermediate FePO4 by a modified sol–gel method. A fast and full combustion procedure is involved to remove carbon and control the size of the intermediate particles. The second step is to prepare LiFePO4/C by combining solid-state reaction with controllable carbon coating. This tw...
متن کاملZinc oxide nano-crystals assisted for carbon dioxide gas sensing; prepared by solvothermal and sonochemical methods
ZnO nanostructures of different methods and sizes were grown in a controlled manner using a simple hydrothermal and sonochemical technique. Controlling the content of concentration and temperature of the reaction mixture, spherical nanoparticles ZnO structures could be synthesized at temperatures 100-150 °C with excellent reproducibility in solvothermal and at different power and time in sonoch...
متن کاملSignificant Performance Enhancement in Asymmetric Supercapacitors based on Metal Oxides, Carbon nanotubes and Neutral Aqueous Electrolyte
Amongst the materials being investigated for supercapacitor electrodes, carbon based materials are most investigated. However, pure carbon materials suffer from inherent physical processes which limit the maximum specific energy and power that can be achieved in an energy storage device. Therefore, use of carbon-based composites with suitable nano-materials is attaining prominence. The synergis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014