Sensitivity of the human circadian system to short-wavelength (420-nm) light.
نویسندگان
چکیده
The circadian and neurobehavioral effects of light are primarily mediated by a retinal ganglion cell photoreceptor in the mammalian eye containing the photopigment melanopsin. Nine action spectrum studies using rodents, monkeys, and humans for these responses indicate peak sensitivities in the blue region of the visible spectrum ranging from 459 to 484 nm, with some disagreement in short-wavelength sensitivity of the spectrum. The aim of this work was to quantify the sensitivity of human volunteers to monochromatic 420-nm light for plasma melatonin suppression. Adult female (n=14) and male (n=12) subjects participated in 2 studies, each employing a within-subjects design. In a fluence-response study, subjects (n=8) were tested with 8 light irradiances at 420 nm ranging over a 4-log unit photon density range of 10(10) to 10(14) photons/cm(2)/sec and 1 dark exposure control night. In the other study, subjects (n=18) completed an experiment comparing melatonin suppression with equal photon doses (1.21 x 10(13) photons/cm(2)/sec) of 420 nm and 460 nm monochromatic light and a dark exposure control night. The first study demonstrated a clear fluence-response relationship between 420-nm light and melatonin suppression (p<0.001) with a half-saturation constant of 2.74 x 10(11) photons/cm(2)/sec. The second study showed that 460-nm light is significantly stronger than 420-nm light for suppressing melatonin (p<0.04). Together, the results clarify the visible short-wavelength sensitivity of the human melatonin suppression action spectrum. This basic physiological finding may be useful for optimizing lighting for therapeutic and other applications.
منابع مشابه
Relationship between Human Pupillary Light Reflex and Circadian System Status
Intrinsically photosensitive retinal ganglion cells (ipRGCs), whose photopigment melanopsin has a peak of sensitivity in the short wavelength range of the spectrum, constitute a common light input pathway to the olivary pretectal nucleus (OPN), the pupillary light reflex (PLR) regulatory centre, and to the suprachiasmatic nuclei (SCN), the major pacemaker of the circadian system. Thus, evaluati...
متن کاملAging of Non-Visual Spectral Sensitivity to Light in Humans: Compensatory Mechanisms?
The deterioration of sleep in the older population is a prevalent feature that contributes to a decrease in quality of life. Inappropriate entrainment of the circadian clock by light is considered to contribute to the alteration of sleep structure and circadian rhythms in the elderly. The present study investigates the effects of aging on non-visual spectral sensitivity to light and tests the h...
متن کاملBlocking Short-Wavelength Component of the Visible Light Emitted by Smartphones’ Screens Improves Human Sleep Quality
Background: It has been shown that short-wavelength blue component of the visible light spectrum can alter the circadian rhythm and suppress the level of melatonin hormone. The short-wavelength light emitted by smartphones’ screens can affect the sleep quality of the people who use these devices at night through suppression of melatonin.Objectives: In this study, we examined the effects of co...
متن کاملبررسی اثرات روشنایی در عملکرد روانی و شناختی انسان - یک مطالعه مروری ساختار یافته
Introduction: Lighting affects many non-visual functions such as Circadian rhythm, alertness, core body temperature, hormone secretion and sleep. The aim of this study was to investigate the effects of lighting on human cognitive and mental performance. Methods: In this systematic review, databases including ISI Web of Knowledge, Scopus, PubMed and Science Direct were searched to access the re...
متن کاملVisual physiology underlying orientation and diel behavior in the sand beach amphipod Talorchestia longicornis.
Talitrid amphipods employ vision for zonal recovery behaviors on sand beaches and for entraining circadian activity rhythms. Using a hierarchy of methods, we examined visual spectral and response-intensity functions in Talorchestia longicornis, a species in which orientation and rhythm entrainment are wavelength-specific behaviors. Microspectrophotometry, electroretinogram recording and behavio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biological rhythms
دوره 23 5 شماره
صفحات -
تاریخ انتشار 2008