Global atmospheric forcing data for Arctic ice-ocean modeling
نویسندگان
چکیده
We compare three forcing data sets, all variants of NCEP forcing, in global ice-ocean simulations and evaluate them for use in Arctic model studies. The data sets include the standard Arctic Ocean Model Intercomparison Project (AOMIP) protocol, standard NCEP forcing fields, and the data set of Large and Yeager (2004). We explore their performance in Arctic simulations using a global, coupled, sea ice-ocean model, and find that while these forcing datasets have many similarities, the resulting simulations present significant differences, most notably in ice thickness and ocean circulation. This underscores the sensitivity of Arctic sea ice and ocean to slight changes in environmental forcing parameters. This study also highlights the difficulties faced by the model intercomparison community attempting to disentangle simulation differences due to model physics from those caused by small differences in forcing parameters. Assessing the simulation uncertainty due to inaccuracies in the forcing data provides context for the simulation uncertainty associated with model physics.
منابع مشابه
The Role of Ocean–Atmosphere Coupling in the Zonal-Mean Atmospheric Response to Arctic Sea Ice Loss
The role of ocean–atmosphere coupling in the zonal-mean climate response to projected late twenty-firstcentury Arctic sea ice loss is investigated using Community Climate System Model version 4 (CCSM4) at 18 spatial resolution. Parallel experiments with different ocean model configurations (full-depth, slab, and no interactive ocean) allow the roles of dynamical and thermodynamic ocean feedback...
متن کاملLoss of sea ice in the Arctic.
The Arctic sea ice cover is in decline. The areal extent of the ice cover has been decreasing for the past few decades at an accelerating rate. Evidence also points to a decrease in sea ice thickness and a reduction in the amount of thicker perennial sea ice. A general global warming trend has made the ice cover more vulnerable to natural fluctuations in atmospheric and oceanic forcing. The obs...
متن کاملArctic Ocean sea ice response to Northern Annular Mode-like wind forcing
[1] The response of the Arctic Ocean sea ice system to Northern Annular Mode-like wind forcing has been investigated using an ocean/sea ice general circulation model coupled to an atmospheric boundary layer model. A series of idealized experiments was performed to investigate the Arctic Ocean’s response to idealized winter wind anomalies on interannual to multi-decadal time scales. The sea ice ...
متن کاملAn analysis of the carbon balance of the Arctic Basin from 1997 to 2006
This study used several model-based tools to analyse the dynamics of the Arctic Basin between 1997 and 2006 as a linked system of land-ocean-atmosphere C exchange. The analysis estimates that terrestrial areas of the Arctic Basin lost 62.9 Tg C yr−1 and that the Arctic Ocean gained 94.1 Tg C yr−1. Arctic lands and oceans were a net CO2 sink of 108.9 Tg C yr−1, which is within the range of uncer...
متن کاملSea ice thickness and recent Arctic warming
The climatic impact of increased Arctic sea ice loss has received growing attention in the last years. However, little focus has been set on the role of sea ice thickness, although it strongly determines surface heat fluxes. Here ensembles of simulations using the EC-Earth atmospheric model (Integrated Forecast System) are performed and analyzed to quantify the atmospheric impacts of Arctic sea...
متن کامل