Resonance Based Flapping Wing Micro Air Vehicle

نویسندگان

  • Johannes F.L. Goosen
  • Hugo J. Peters
  • Qi Wang
  • Paolo Tiso
  • Fred van Keulen
چکیده

Flapping wing micro air vehicles have many possible applications and have therefore been the subject of extensive research. The Atalanta project aims to develop a fully autonomous, 10 cm wingspan, flapping wing sensor platform. The structure is based on a fully compliant resonating structure with passive wing pitching. Several design improvements have taken place since the last report. Introduction of non-linear springs result in a more effective wing kinematic and extensive simulation and optimization was done to improve the wing design. Lighter electromagnetic actuators were designed while the possibilities of a chemical micro engine are investigated. Control experiments are underway using piezoelectric elements to locally change the structure stiffness thereby changing the kinematics of the system and thus the lift. To be able to efficiently design such a flight control, a framework was developed for the control of resonant compliant systems. Finally a sensor system for flight stabilization and object avoidance is suggested and under investigation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical analysis and experimental verification for sizing of flapping wing micro air vehicles

To design efficient flapping wing micro air vehicles (FWMAVs), a comprehensive sizing method based on theoretical and statistical analyses is proposed and experimentally verified. This method is composed of five steps including defining and analyzing the MAV mission, determining the flying modes, defining the wing shape and aspect ratio of the wing, applying the constraint analysis based on the...

متن کامل

Flight Dynamic Stability of a Flapping Wing Micro Air Vehicle in Hover

This paper discusses a methodology of analyzing the flight dynamic stability of a flapping wing Micro Air Vehicle (MAV) in hover. The flexible flapping wings are modeled by a strain-based geometrically nonlinear beam formulation, coupled with an empirical aerodynamic formulation for load calculation on the wings surfaces. Wing flapping kinematics is described using a set of Euler angles. Nonlin...

متن کامل

Kinematics Optimization for a Flapping-wing Micro Air Vehicle

A flight-dynamics oriented simulation model of a flapping-wing Micro Air Vehicle (MAV) has been developed. This concept is based on flapping flight performed in nature by insects or hummingbirds. An optimization of the flapping kinematics of the wing has been led, in order to maximize the mean lift and thus the payload. A neural network has been designed to reproduce the function shape of the w...

متن کامل

Conceptual design of flapping-wing micro air vehicles.

Traditional micro air vehicles (MAVs) are miniature versions of full-scale aircraft from which their design principles closely follow. The first step in aircraft design is the development of a conceptual design, where basic specifications and vehicle size are established. Conceptual design methods do not rely on specific knowledge of the propulsion system, vehicle layout and subsystems; these d...

متن کامل

An experimental investigation on the acoustic performance of a flapping wing Micro-Air-Vehicle

An experimental study was conducted to assess the acoustic performance of a two-winged Flapping-Wing Micro-Air-Vehicle (FW-MAV) with various wing materials and wing structure configurations for flapping flight applications. It was concluded that highly elastic materials could significantly reduce the flapping wing noise in a wide spectrum of audible frequencies. Furthermore, a dielectric elasto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013