Low-Pass Filtering, Heat Flux, and Atlantic Multidecadal Variability

نویسندگان

  • MARK A. CANE
  • AMY C. CLEMENT
  • LISA N. MURPHY
  • KATINKA BELLOMO
چکیده

In this model study the authors explore the possibility that the internal component of the Atlantic multidecadal oscillation (AMO) sea surface temperature (SST) signal is indistinguishable from the response to white noise forcing from the atmosphere and ocean. Here, complex models are compared without externally varying forcing with a one-dimensional noise-drivenmodel for SST. General analytic expressions are obtained for both unfiltered and low-pass filtered lead–lag correlations. It is shown that this simple model reproduces many of the simulated lead–lag relationships among temperature, rate of change of temperature, and surface heat flux. It is concluded that the finding that at low frequencies the ocean loses heat to the atmosphere when the temperature is warm, which has been interpreted as showing that the ocean circulation drives the AMO, is a necessary consequence of the fact that at long periods the net heat flux (ocean plus atmosphere) is zero to a good approximation. It does not distinguish between the atmosphere and ocean as the source of the AMO and is consistent with the hypothesis that theAMO is driven bywhite noise heat fluxes. It is shown that some results in the literature are artifacts of low-pass filtering, which creates spurious low-frequency signals when the underlying data are white or red noise. It is concluded that in the absence of external forcing the AMO in most GCMs is consistent with being driven by white noise, primarily from the atmosphere.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arctic–North Atlantic Interactions and Multidecadal Variability of the Meridional Overturning Circulation

Analyses of a 500-yr control integration with the non-flux-adjusted coupled atmosphere–sea ice–ocean model ECHAM5/Max-Planck-Institute Ocean Model (MPI-OM) show pronounced multidecadal fluctuations of the Atlantic overturning circulation and the associated meridional heat transport. The period of the oscillations is about 70–80 yr. The low-frequency variability of the meridional overturning cir...

متن کامل

Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature?

[1] While the Northern Hemisphere mean surface temperature has clearly warmed over the 20th century due in large part to increasing greenhouse gases, this warming has not been monotonic. The departures from steady warming on multidecadal timescales might be associated in part with radiative forcing, especially solar irradiance, volcanoes, and anthropogenic aerosols. It is also possible that int...

متن کامل

A review of North Atlantic modes of natural variability and their driving mechanisms

[1] This paper reviews three modes of natural variability that have been identified in the North Atlantic Ocean, namely, the North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO) and the Atlantic Meridional Mode (AMM). This manuscript focuses on the multidecadal fluctuations of these three modes. A range of different mechanisms to initiate phase reversals in these modes ...

متن کامل

Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation

Observational analysis suggests that the western tropical Pacific (WTP) sea surface temperature (SST) shows predominant variability over multidecadal time scales, which is unlikely to be explained by the Interdecadal Pacific Oscillation. Here we show that this variability is largely explained by the remote Atlantic multidecadal oscillation (AMO). A suite of Atlantic Pacemaker experiments succes...

متن کامل

The absence of an Atlantic imprint on the multidecadal variability of wintertime European temperature.

Northern Hemisphere climate responds sensitively to multidecadal variability in North Atlantic sea surface temperature (SST). It is therefore surprising that an imprint of such variability is conspicuously absent in wintertime western European temperature, despite that Europe's climate is strongly influenced by its neighbouring ocean, where multidecadal variability in basin-average SST persists...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017