On generalized hoops, homomorphic images of residuated lattices, and (G)BL-algebras

نویسنده

  • Peter Jipsen
چکیده

Right-residuated binars and right-divisible residuated binars are defined as precursors of generalized hoops, followed by some results and open problems about these partially ordered algebras. Next we show that all complete homomorphic images of a complete residuated lattice A can be constructed easily on certain definable subsets of A. Applying these observations to the algebras of Hajek’s Basic Logic (BLalgebras), we give an effective description of the HSposet of finite subdirectly irreducible BL-algebras. The lattice of finitely generated BL-varieties can be obtained from this HS-poset by constructing the lattice of downward closed sets. These results are extended to bounded generalized BL-algebras using poset products and the duality between complete perfect Heyting algebras and partially ordered sets. We also prove that the number of finite generalized BL-algebras with n join-irreducible elements is, up to isomorphism, the same as the number of preorders on an n-element set, hence the same as the number of closure algebras (i.e. S4-modal algebras) with 2 elements. This result gives rise to a faithful functor from the category of finite GBL-algebras to the category of finite closure algebras that is full on objects, providing a novel connection between some substructural logics and classical modal logic. Finally we show how generic satisfaction modulo theories solvers (SMT-solvers) can be used to obtain practical decision procedures for propositional Basic Logic and many of its extensions. 1 Residuated binars and generalized hoops We begin by considering structures with a simpler signature than residuated lattices. The aim of this section is to focus on the right-divisibility axiom in the setting Faculty of Mathematics, School of Computational Sciences and Center of Excellence in Computation, Algebra and Topology Chapman University, Orange, CA 92866, USA E-mail: [email protected] of right-residuated structures, and without further assumptions such as associativity or commutativity. A right-residuated binar is of the form (A,≤, ·, /) where (A,≤) is a partially ordered set, · is a binary operation on A and / is its right residual. This means that for all x, y, z ∈ A

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-G-filters, Stonean filters, MTL-filters, divisible filters, BL-filters and regular filters in residuated lattices

At present, the filter theory of $BL$textit{-}algebras has been widelystudied, and some important results have been published (see for examplecite{4}, cite{5}, cite{xi}, cite{6}, cite{7}). In other works such ascite{BP}, cite{vii}, cite{xiii}, cite{xvi} a study of a filter theory inthe more general setting of residuated lattices is done, generalizing thatfor $BL$textit{-}algebras. Note that fil...

متن کامل

Injectives in Residuated Algebras

Injectives in several classes of structures associated with logic are characterized. Among the classes considered are residuated lattices, MTLalgebras, IMTL-algebras, BL-algebras, NM-algebras and bounded hoops.

متن کامل

On residuated lattices with universal quantifiers

We consider properties of residuated lattices with universal quantifier and show that, for a residuated lattice $X$, $(X, forall)$ is a residuated lattice with a quantifier if and only if there is an $m$-relatively complete substructure of $X$. We also show that, for a strong residuated lattice $X$, $bigcap {P_{lambda} ,|,P_{lambda} {rm is an} m{rm -filter} } = {1}$ and hence that any strong re...

متن کامل

A Survey of Generalized Basic Logic Al- gebras

Petr Hájek identified the logic BL, that was later shown to be the logic of continuous t-norms on the unit interval, and defined the corresponding algebraic models, BL-algebras, in the context of residuated lattices. The defining characteristics of BL-algebras are representability and divisibility. In this short note we survey recent developments in the study of divisible residuated lattices an...

متن کامل

Independent definition of reticulations on residuated lattices

A notion of reticulation which provides topological properties on algebras has introduced on commutative rings in 1980 by Simmons in [5]. For a given commutative ring A, a pair (L, λ) of a bounded distributive lattice and a mapping λ : A → L satisfying some conditions is called a reticulation on A, and the map λ gives a homeomorphism between the topological space Spec(A) consisting of prime fil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft Comput.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2017