Robust Optimization for Non-Convex Objectives
نویسندگان
چکیده
We consider robust optimization problems, where the goal is to optimize in the worst case over a class of objective functions. We develop a reduction from robust improper optimization to Bayesian optimization: given an oracle that returns αapproximate solutions for distributions over objectives, we compute a distribution over solutions that is α-approximate in the worst case. We show that derandomizing this solution is NP-hard in general, but can be done for a broad class of statistical learning tasks. We apply our results to robust neural network training and submodular optimization. We evaluate our approach experimentally on corrupted character classification, and robust influence maximization in networks.
منابع مشابه
Multi-objective robust resource allocation for secure communication in full-duplex MIMO systems
In this paper, we study robust resource allocation for the multi-user full-duplex (FD) multiple-input multiple-output (MIMO) communication systems. Particularly, we aim at minimizing uplink (UL) transmit power and downlink (DL) transmit power simultaneously while guaranteeing the quality of service (QoS) requirements regarding secure UL and DL communication, under the consideration of the imper...
متن کاملParticle Swarm Optimization for Hydraulic Analysis of Water Distribution Systems
The analysis of flow in water-distribution networks with several pumps by the Content Model may be turned into a non-convex optimization uncertain problem with multiple solutions. Newton-based methods such as GGA are not able to capture a global optimum in these situations. On the other hand, evolutionary methods designed to use the population of individuals may find a global solution even for ...
متن کاملOn the approximability of adjustable robust convex optimization under uncertainty
In this paper, we consider adjustable robust versions of convex optimization problems with uncertain constraints and objectives and show that under fairly general assumptions, a static robust solution provides a good approximation for these adjustable robust problems. An adjustable robust optimization problem is usually intractable since it requires to compute a solution for all possible realiz...
متن کاملRobust Duality for Generalized Convex Programming Problems under Data Uncertainty∗
In this paper we present a robust duality theory for generalized convex programming problems in the face of data uncertainty within the framework of robust optimization. We establish robust strong duality for an uncertain nonlinear programming primal problem and its uncertain Lagrangian dual by showing strong duality between the deterministic counterparts: robust counterpart of the primal model...
متن کاملSolving a non-convex non-linear optimization problem constrained by fuzzy relational equations and Sugeno-Weber family of t-norms
Sugeno-Weber family of t-norms and t-conorms is one of the most applied one in various fuzzy modelling problems. This family of t-norms and t-conorms was suggested by Weber for modeling intersection and union of fuzzy sets. Also, the t-conorms were suggested as addition rules by Sugeno for so-called $lambda$–fuzzy measures. In this paper, we study a nonlinear optimization problem where the fea...
متن کامل