Molecular basis of allele-specific efficacy of a blood-stage malaria vaccine: vaccine development implications.

نویسندگان

  • Amed Ouattara
  • Shannon Takala-Harrison
  • Mahamadou A Thera
  • Drissa Coulibaly
  • Amadou Niangaly
  • Renion Saye
  • Youssouf Tolo
  • Sheetij Dutta
  • D Gray Heppner
  • Lorraine Soisson
  • Carter L Diggs
  • Johan Vekemans
  • Joe Cohen
  • William C Blackwelder
  • Tina Dube
  • Matthew B Laurens
  • Ogobara K Doumbo
  • Christopher V Plowe
چکیده

The disappointing efficacy of blood-stage malaria vaccines may be explained in part by allele-specific immune responses that are directed against polymorphic epitopes on blood-stage antigens. FMP2.1/AS02(A), a blood-stage candidate vaccine based on apical membrane antigen 1 (AMA1) from the 3D7 strain of Plasmodium falciparum, had allele-specific efficacy against clinical malaria in a phase II trial in Malian children. We assessed the cross-protective efficacy of the malaria vaccine and inferred which polymorphic amino acid positions in AMA1 were the targets of protective allele-specific immune responses. FMP2.1/AS02(A) had the highest efficacy against AMA1 alleles that were identical to the 3D7 vaccine-type allele at 8 highly polymorphic amino acid positions in the cluster 1 loop (c1L) but differed from 3D7 elsewhere in the molecule. Comparison of the incidence of vaccine-type alleles before and after vaccination in the malaria vaccine and control groups and examination of the patterns of allele change at polymorphic positions in consecutive malaria episodes suggest that the highly polymorphic amino acid position 197 in c1L was the most critical determinant of allele-specific efficacy. These results indicate that a multivalent AMA1 vaccine with broad efficacy could include only a limited set of key alleles of this extremely polymorphic antigen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extreme polymorphism in a vaccine antigen and risk of clinical malaria: implications for vaccine development.

Vaccines directed against the blood stages of Plasmodium falciparum malaria are intended to prevent the parasite from invading and replicating within host cells. No blood-stage malaria vaccine has shown clinical efficacy in humans. Most malaria vaccine antigens are parasite surface proteins that have evolved extensive genetic diversity, and this diversity could allow malaria parasites to escape...

متن کامل

Analysis of a Multi-component Multi-stage Malaria Vaccine Candidate—Tackling the Cocktail Challenge

Combining key antigens from the different stages of the P. falciparum life cycle in the context of a multi-stage-specific cocktail offers a promising approach towards the development of a malaria vaccine ideally capable of preventing initial infection, the clinical manifestation as well as the transmission of the disease. To investigate the potential of such an approach we combined proteins and...

متن کامل

Strain-specific Plasmodium falciparum growth inhibition among Malian children immunized with a blood-stage malaria vaccine

The blood-stage malaria vaccine FMP2.1/AS02A, comprised of recombinant Plasmodium falciparum apical membrane antigen 1 (AMA1) and the adjuvant system AS02A, had strain-specific efficacy against clinical malaria caused by P. falciparum with the vaccine strain 3D7 AMA1 sequence. To evaluate a potential correlate of protection, we measured the ability of participant sera to inhibit growth of 3D7 a...

متن کامل

PD-1 dependent exhaustion of CD8+ T cells drives chronic malaria.

Malaria is a highly prevalent disease caused by infection by Plasmodium spp., which infect hepatocytes and erythrocytes. Blood-stage infections cause devastating symptoms and can persist for years. Antibodies and CD4(+) T cells are thought to protect against blood-stage infections. However, there has been considerable difficulty in developing an efficacious malaria vaccine, highlighting our inc...

متن کامل

Challenges of assessing the clinical efficacy of asexual blood-stage Plasmodium falciparum malaria vaccines

In the absence of any highly effective vaccine candidate against Plasmodium falciparum malaria, it remains imperative for the field to pursue all avenues that may lead to the successful development of such a formulation. The development of a subunit vaccine targeting the asexual blood-stage of Plasmodium falciparum malaria infection has proven particularly challenging with only limited success ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of infectious diseases

دوره 207 3  شماره 

صفحات  -

تاریخ انتشار 2013