X-ray induced photocurrent characteristics of CVD diamond detectors with different carbon electrodes
نویسندگان
چکیده
Diamond has unique properties which make it suitable for a broad range of radiation detection applications ranging from particle timing and spectroscopy, to neutron, UV and X-ray sensors. In X-ray dosimetry, the atomic number of diamond (Z = 6) close to that of the human tissues (Z = 7.42) allows to mimic the real absorbed dose avoiding off-line recalculations. Moreover, its low atomic number and the capability to withstand high radiation fluxes make possible its use as beam monitor without altering significantly the properties of the interacting beam. To preserve the tissue equivalence of the diamond and minimize the perturbation and absorption of the incident beam, diamond detectors based on low thickness and low atomic number electrodes become a requirement. In this paper we present the X-ray detection characteristics of electronic grade CVD diamond sensors prepared in house with thin amorphous carbon electrodes fabricated by Pulsed Laser Deposition (PLD) technique in the fluence range of 2.3 – 3.6 J∙cm -2 . The devices showed a linear dependence of the induced photocurrent respect to the dose rate. Also, best dynamic response and better stability of the signals were achieved for applied bias up to ±50 V with signal to noise ratio (SNR) of ~300.
منابع مشابه
Designing Optimal Bias Voltage for Radiotherapy Diamond Dosimeter
Introduction: Recent developments of radiotherapy techniques, require high accuracy detectors to determine the delivered dose in a small area. Chemical vapor deposition (CVD) or naturally growth diamond detectors which are commercially available are good candidates for this purpose. In these detectors two electrodes with high different electrical potential are deposited on both...
متن کاملEnhancement of X-ray detection by single-walled carbon nanotube enriched flexible polymer composite
UNLABELLED Although organic-based direct conversion X-ray detectors have been developed, their photocurrent generation efficiency has been limited by recombination of excitons due to the intrinsically poor electrical properties of organic materials. In this report, we fabricated a polymer-based flexible X-ray detector and enhanced the X-ray detection sensitivity using a single-walled carbon nan...
متن کاملCvd-diamond-based Position Sensitive Photoconductive Detector for High-flux X-rays and Gamma Rays
A position-sensitive photoconductive detector (PSPCD) using insulating-type CVD diamond as its substrate material has been developed at the Advanced Photon Source (APS). Several different configurations, including a quadrant pattern for a x-ray-transmitting beam position monitor (TBPM) and 1-D and 2-D arrays for PSPCD beam profilers, have been developed. Tests on different PSPCD devices with hi...
متن کاملCharacterization of thick film poly„triarylamine... semiconductor diodes for direct x-ray detection
Thick film 5 m thick semiconducting polymer diodes incorporating poly triarylamine PTAA have been produced and applied as direct x-ray detectors. Experiments determined that a rectifying diode behavior persists when increasing the thickness of the active layer above typical thin film thicknesses 1 m , and the electrical conduction mechanism of the diodes has been identified. Direct current and ...
متن کاملSynthesis and characterization of Gd2O2 S: Tb3+ phosphor powder for X-ray imaging detectors
Gadolinium oxysulfide phosphor doped with trivalent terbium have been synthesized using urea homogenous precipitation and followed by sulfurization at 800 °C under argon atmosphere. Structural and morphological of synthesized phosphor powder were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrometry (FT-IR). Hexagonal structure ...
متن کامل