Splicing changes in SMA mouse motoneurons and SMN-depleted neuroblastoma cells: Evidence for involvement of splicing regulatory proteins

نویسندگان

  • Qing Huo
  • Melis Kayikci
  • Philipp Odermatt
  • Kathrin Meyer
  • Olivia Michels
  • Smita Saxena
  • Jernej Ule
  • Daniel Schümperli
چکیده

Spinal Muscular Atrophy (SMA) is caused by deletions or mutations in the Survival Motor Neuron 1 (SMN1) gene. The second gene copy, SMN2, produces some, but not enough, functional SMN protein. SMN is essential to assemble small nuclear ribonucleoproteins (snRNPs) that form the spliceosome. However, it is not clear whether SMA is caused by defects in this function that could lead to splicing changes in all tissues, or by the impairment of an additional, less well characterized, but motoneuron-specific SMN function. We addressed the first possibility by exon junction microarray analysis of motoneurons (MNs) isolated by laser capture microdissection from a severe SMA mouse model. This revealed changes in multiple U2-dependent splicing events. Moreover, splicing appeared to be more strongly affected in MNs than in other cells. By testing mutiple genes in a model of progressive SMN depletion in NB2a neuroblastoma cells, we obtained evidence that U2-dependent splicing changes occur earlier than U12-dependent ones. As several of these changes affect genes coding for splicing regulators, this may acerbate the splicing response induced by low SMN levels and induce secondary waves of splicing alterations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altered mRNA Splicing in SMN-Depleted Motor Neuron-Like Cells

Spinal muscular atrophy (SMA) is an intractable neurodegenerative disease afflicting 1 in 6-10,000 live births. One of the key functions of the SMN protein is regulation of spliceosome assembly. Reduced levels of the SMN protein that are observed in SMA have been shown to result in aberrant mRNA splicing. SMN-dependent mis-spliced transcripts in motor neurons may cause stresses that are particu...

متن کامل

The SMN Protein is a Key Regulator of Nuclear Architecture in Differentiating Neuroblastoma Cells

The cell nucleus contains two closely related structures, Cajal bodies (CBs) and gems. CBs are the first site of accumulation of newly assembled splicing snRNPs (small nuclear ribonucleoproteins) following their import into the nucleus, before they form their steady-state localization in nuclear splicing speckles. Gems are the nuclear site of accumulation of survival motor neurons (SMNs), an in...

متن کامل

SMN deficiency alters Nrxn2 expression and splicing in zebrafish and mouse models of spinal muscular atrophy.

Spinal muscular atrophy (SMA) is a progressive neurodegenerative disease affecting lower motor neurons. SMA is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene, which result in reduced levels of functional SMN protein. Biochemical studies have linked the ubiquitously expressed SMN protein to the assembly of pre-mRNA processing U snRNPs, raising the possibility that aberrant splici...

متن کامل

Changes in intranuclear mobility of mature snRNPs provide a mechanism for splicing defects in spinal muscular atrophy

It is becoming increasingly clear that defects in RNA metabolism can lead to disease. Spinal muscular atrophy (SMA), a leading genetic cause of infant mortality, results from insufficient amounts of survival motor neuron (SMN) protein. SMN is required for the biogenesis of small nuclear ribonucleoproteins (snRNPs): essential components of the spliceosome. Splicing abnormalities have been detect...

متن کامل

Splicing of the Survival Motor Neuron genes and implications for treatment of SMA

Proximal spinal muscular atrophy (SMA) is a neuromuscular disease caused by low levels of the survival motor neuron (SMN) protein. The reduced SMN levels are due to loss of the survival motor neuron-1 (SMN1) gene. Humans carry a nearly identical SMN2 gene that generates a truncated protein, due to a C to T nucleotide alteration in exon 7 that leads to inefficient RNA splicing of exon 7. This ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2014