Graph energy change due to edge grafting operations and its applications ∗
نویسندگان
چکیده
The energy of a graph is the sum of the absolute values of the eigenvalues of its adjacency matrix. The edge grafting operation on a graph is a kind of edge moving between the two pendent paths starting from the same vertex. In this paper we show how the graph energy change under the edge grafting operations. As the applications of this grafting method, we also obtain some new results on a conjecture about the tree of order n with the fourth maximal energy.
منابع مشابه
Two new edge grafting operations on the energy of unicyclic graphs and their applications
The energy of a graph is the sum of the absolute values of the eigenvalues of its adjacency matrix. The edge grafting operation on a graph is a kind of edge moving between two vertices of the graph. In this paper, we introduce two new edge grafting operations and show how the graph energy changes under these edge grafting operations. Let G(n) be the set of all unicyclic graphs with n vertices. ...
متن کاملOn exponential domination and graph operations
An exponential dominating set of graph $G = (V,E )$ is a subset $Ssubseteq V(G)$ such that $sum_{uin S}(1/2)^{overline{d}{(u,v)-1}}geq 1$ for every vertex $v$ in $V(G)-S$, where $overline{d}(u,v)$ is the distance between vertices $u in S$ and $v in V(G)-S$ in the graph $G -(S-{u})$. The exponential domination number, $gamma_{e}(G)$, is the smallest cardinality of an exponential dominating set....
متن کاملOn Zagreb Energy and edge-Zagreb energy
In this paper, we obtain some upper and lower bounds for the general extended energy of a graph. As an application, we obtain few bounds for the (edge) Zagreb energy of a graph. Also, we deduce a relation between Zagreb energy and edge-Zagreb energy of a graph $G$ with minimum degree $delta ge2$. A lower and upper bound for the spectral radius of the edge-Zagreb matrix is obtained. Finally, we ...
متن کاملEla Graph Energy Change Due to Any Single Edge Deletion
Abstract. The energy of a graph is the sum of the absolute values of its eigenvalues. We propose a new problem on graph energy change due to any single edge deletion. Then we survey the literature for existing partial solution of the problem, and mention a conjecture based on numerical evidence. Moreover, we prove in three different ways that the energy of a cycle graph decreases when an arbitr...
متن کاملGlobal Forcing Number for Maximal Matchings under Graph Operations
Let $S= \{e_1,\,e_2, \ldots,\,e_m\}$ be an ordered subset of edges of a connected graph $G$. The edge $S$-representation of an edge set $M\subseteq E(G)$ with respect to $S$ is the vector $r_e(M|S) = (d_1,\,d_2,\ldots,\,d_m)$, where $d_i=1$ if $e_i\in M$ and $d_i=0$ otherwise, for each $i\in\{1,\ldots , k\}$. We say $S$ is a global forcing set for maximal matchings of $G$ if $...
متن کامل