A Multilayer Neural Network for Classification of Frequency Information Dominant Patterns
نویسندگان
چکیده
Features of pattern data can be expressed in a more informative feature domain in order to improve the classification performance. This paper proposes a new implementation of the multi-layer feed-forward neural network that can do classification based on the frequency features extracted by the first hidden layer that performs correlational filter operation. The correlational feature extraction layer performs the filtering operation with the Fourier transformed input pattern, which is resulted in complex data form. The correlation filter output is then converted into power spectrum data which is fed into the next layer of the next layer. Updating rule for the parameters of the correlational filter is derived using the back-propagation learning scheme. Experimental studies demonstrated that our feed-forward neural network produces superior performance for the classification problem with the patterns that have frequency information dominant property. Key-Words: Correlational operation, classification, Fourier transform, feature extraction, domain transformation, neural network.
منابع مشابه
Classification of Iranian traditional musical modes (DASTGÄH) with artificial neural network
The concept of Iranian traditional musical modes, namely DASTGÄH, is the basis for the traditional music system. The concept introduces seven DASTGÄHs. It is not an easy process to distinguish these modes and such practice is commonly performed by an experienced person in this field. Apparently, applying artificial intelligence to do such classification requires a combination of the basic infor...
متن کاملLIQUEFACTION POTENTIAL ASSESSMENT USING MULTILAYER ARTIFICIAL NEURAL NETWORK
In this study, a low-cost, rapid and qualitative evaluation procedure is presented using dynamic pattern recognition analysis to assess liquefaction potential which is useful in the planning, zoning, general hazard assessment, and delineation of areas, Dynamic pattern recognition using neural networks is generally considered to be an effective tool for assessing of hazard potential on the b...
متن کاملDeveloping A Fault Diagnosis Approach Based On Artificial Neural Network And Self Organization Map For Occurred ADSL Faults
Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) ser...
متن کاملSleep snoring detection using multi-layer neural networks.
Snoring detection is important for diagnosing obstructive sleep apnea syndrome (OSAS) and other respiratory sleep disorders. In general, audio signal processing such as snoring sound analysis uses the frequency characteristics of the signal. Recently, a correlational filter Multilayer Perceptron neural network (f-MLP) has been proposed, which has the first hidden layer of correlational filter o...
متن کاملUsing Artificial Neural Network Algorithm to Predict Tensile Properties of Cotton-Covered Nylon Core Yarns
Artificial Neural Networks are information processing systems. Over the past several years, these algorithms have received much attention for their applications in pattern completing, pattern matching and classification and also for their use as a tool in various areas of problem solving. In this work, an Artificial Neural Network model is presented for predicting the tensile 
properties of ...
متن کامل