Lifetime and strength of periodic bond clusters between elastic media under inclined loading.
نویسندگان
چکیده
Focal adhesions are clusters of specific receptor-ligand bonds that link an animal cell to an extracellular matrix. To understand the mechanical responses of focal adhesions, here we develop a stochastic-elasticity model of a periodic array of adhesion clusters between two dissimilar elastic media subjected to an inclined tensile stress, in which stochastic descriptions of molecular bonds and elastic descriptions of interfacial traction are unified in a single modeling framework. We first establish a fundamental scaling law of interfacial traction distribution and derive a stress concentration index that governs the transition between uniform and cracklike singular distributions of the interfacial traction within molecular bonds. Guided by this scaling law, we then perform Monte Carlo simulations to investigate the effects of cluster size, cell/extracellular matrix modulus, and loading direction on lifetime and strength of the adhesion clusters. The results show that intermediate adhesion size, stiff substrate, cytoskeleton stiffening, and low-angle pulling are factors that contribute to the stability of focal adhesions. The predictions of our model provide feasible explanations for a wide range of experimental observations and suggest possible mechanisms by which cells can modulate adhesion and deadhesion via cytoskeletal contractile machinery and sense mechanical properties of their surroundings.
منابع مشابه
A Sub Loading Surface Multilaminate Model for Elastic-Plastic Porous Media
A framework for development of constitutive models based on semi-micromechanical aspects of plasticity is proposed. The resulting of this model for material employed friction type failure criterion, sub-loading surface, and associated flow rule. This model is capable of predicting effects of the rotation of principal stress/strain axes and consequent plastic flow, induced anisotropy of strength...
متن کاملExamining and calculation of non-classical in the solutions to the true elastic cable under concentrated loads in nanofilm
Due to high surface-to-volume ratio of nanoscale structures, surface stress effects have a significant influence on their behavior. In this paper, a two-dimensional problem for an elastic layer that is bonded to a rigid substrate and subjected to an inclined concentrated line load acting on the surface of the layer is investigated based on Gurtin-Murdoch continuum model to consider surface stre...
متن کاملA new approach to predict of mechanical properties at the interface of Aluminium/Copper explosive cladding by explosive scarf welding
Abstract: The purpose of this study is to produce scarf joint through explosive welding process (EXW). The scarf weld is a process in which the final bond interface is oblique. With applying the explosive welding technique, this joint can create a metallic bond between similar or dissimilar metals. In this study, chamfered end of aluminum and copper plates were joined explosively and named scar...
متن کاملExamining and calculation of non-classical in the solutions to the true elastic cable under concentrated loads in nanofilm
Due to high surface-to-volume ratio of nanoscale structures, surface stress effects have a significant influence on their behavior. In this paper, a two-dimensional problem for an elastic layer that is bonded to a rigid substrate and subjected to an inclined concentrated line load acting on the surface of the layer is investigated based on Gurtin-Murdoch continuum model to consider surface stre...
متن کاملEffect of loading conditions on the dissociation behaviour of catch bond clusters.
Under increasing tensile load, the lifetime of a single catch bond counterintuitively increases up to a maximum and then decreases exponentially like a slip bond. So far, the characteristics of single catch bond dissociation have been extensively studied. However, it remains unclear how a cluster of catch bonds behaves under tensile load. We perform computational analysis on the following model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 97 9 شماره
صفحات -
تاریخ انتشار 2009