Plain Polynomial Arithmetic on GPU
نویسندگان
چکیده
As for serial code on CPUs, parallel code on GPUs for dense polynomial arithmetic relies on a combination of asymptotically fast and plain algorithms. Those are employed for data of large and small size, respectively. Parallelizing both types of algorithms is required in order to achieve peak performances. In this paper, we show that the plain dense polynomial multiplication can be efficiently parallelized on GPUs. Remarkably, it outperforms (highly optimized) FFT-based multiplication up to degree 2 while on CPU the same threshold is usually at 2. We also report on a GPU implementation of the Euclidean Algorithm which is both work-efficient and runs in linear time for input polynomials up to degree 2, thus showing the performance of the GCD algorithm based on systolic arrays.
منابع مشابه
Dense Arithmetic over Finite Fields with the CUMODP Library
CUMODP is a CUDA library for exact computations with dense polynomials over finite fields. A variety of operations like multiplication, division, computation of subresultants, multi-point evaluation, interpolation and many others are provided. These routines are primarily designed to offer GPU support to polynomial system solvers and a bivariate system solver is part of the library. Algorithms ...
متن کاملHardware Acceleration Technologies in Computer Algebra : Challenges
The objective of high performance computing (HPC) is to ensure that the computational power of hardware resources is well utilized to solve a problem. Various techniques are usually employed to achieve this goal. Improvement of algorithm to reduce the number of arithmetic operations, modifications in accessing data or rearrangement of data in order to reduce memory traffic, code optimization at...
متن کاملcuHE: A Homomorphic Encryption Accelerator Library
We introduce a CUDA GPU library to accelerate evaluations with homomorphic schemes defined over polynomial rings enabled with a number of optimizations including algebraic techniques for efficient evaluation, memory minimization techniques, memory and thread scheduling and low level CUDA hand-tuned assembly optimizations to take full advantage of the mass parallelism and high memory bandwidth G...
متن کاملEfficient implementation for QUAD stream cipher with GPUs
QUAD stream cipher uses multivariate polynomial systems. It has provable security based on the computational hardness assumption. More specifically, the security of QUAD depends on hardness of solving non-linear multivariate systems over a finite field, and it is known as an NP-complete problem. However, QUAD is slower than other stream ciphers, and an efficient implementation, which has a redu...
متن کاملEfficient Multiplication of Polynomials on Graphics Hardware
We present the algorithm to multiply univariate polynomials with integer coefficients efficiently using the Number Theoretic transform (NTT) on Graphics Processing Units (GPU). The same approach can be used to multiply large integers encoded as polynomials. Our algorithm exploits fused multiply-add capabilities of the graphics hardware. NTT multiplications are executed in parallel for a set of ...
متن کامل