Fractional discrete Fourier transform of type IV based on the eigenanalysis of a nearly tridiagonal matrix

نویسنده

  • Magdy T. Hanna
چکیده

a Nearly Tridiagonal Matrix Magdy Tawfik Hanna1 ABSTRACT A fully-fledged definition for the fractional discrete Fourier transform of type IV (FDFT-IV) is presented and shown to outperform the simple definition of the FDFT-IV which is proved to be just a linear combination of the signal, its DFT-IV and their flipped versions. This definition heavily depends on the availability of orthonormal eigenvectors of the DFT-IV matrix G. An eigenanalysis is performed of a nearly tridiagonal matrix S which commutes with matrix G. An involutary unitary matrix P is defined and used for performing a similarity transformation that reduces S to a block diagonal form where the two diagonal blocks are exactly tridiagonal matrices. Moreover the elements of those two diagonal blocks are derived in order to circumvent the need for performing the two matrix multiplications involved in the similarity transformation. Orthonormal even and odd symmetric eigenvectors for S are generated – in terms of the eigenvectors of the two diagonal blocks – and proved to always be eigenvectors of G irrespective of the multiplicities of the eigenvalues of S. The relevance of the method contributed here is manifested in the case of a repeated eigenvalue of S with multiplicity 2 where a direct application of a general eigenanalysis procedure in any software package will not produce a pair of even and odd symmetric eigenvectors corresponding to this repeated eigenvalue. It should be mentioned that the almost tridiagonal matrix S which commutes with the DFT-IV matrix G being dealt with here is distinct from matrix S which commutes with the DFT matrix F dealt with in a previous paper [7].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete fractional Fourier transform based on the eigenvectors of tridiagonal and nearly tridiagonal matrices

The recent emergence of the discrete fractional Fourier transform (DFRFT) has caused a revived interest in the eigenanalysis of the discrete Fourier transform (DFT) matrix F with the objective of generating orthonormal Hermite-Gaussian-like eigenvectors. The Grünbaum tridiagonal matrix T – which commutes with matrix F – has only one repeated eigenvalue with multiplicity two and simple remaining...

متن کامل

Fractional Fourier Transform Based OFDMA for Doubly Dispersive Channels

The performance of Orthogonal Frequency Division Multiple Access (OFDMA) system degrades significantly in doubly dispersive channels. This is due to the fact that exponential sub-carriers do not match the singular functions of this type of channels. To solve this problem, we develop a system whose sub-carriers are chirp functions. This is equivalent to exploiting Fractional Fourier Transform (F...

متن کامل

On the Grunbaum Commutor Based Discrete Fractional Fourier Transform

The basis functions of the continuous fractional Fourier transform (FRFT) are linear chirp signals that are suitable for time-frequency analysis of signals with chirping timefrequency content. Efforts to develop a discrete computable version of the fractional Fourier transform (DFRFT) have focussed on furnishing a orthogonal set of eigenvectors for the DFT that serve as discrete versions of the...

متن کامل

A general construction of Reed-Solomon codes based on generalized discrete Fourier transform

In this paper, we employ the concept of the Generalized Discrete Fourier Transform, which in turn relies on the Hasse derivative of polynomials, to give a general construction of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the length of the code. The constructed linear codes  enjoy nice algebraic properties just as the classic one.

متن کامل

The discrete fractional Fourier transform

We propose and consolidate a definition of the discrete fractional Fourier transform that generalizes the discrete Fourier transform (DFT) in the same sense that the continuous fractional Fourier transform generalizes the continuous ordinary Fourier transform. This definition is based on a particular set of eigenvectors of the DFT matrix, which constitutes the discrete counterpart of the set of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Digital Signal Processing

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2012