Spherical Nilpotent Orbits and Unipotent Representations

ثبت نشده
چکیده

then the coadjoint orbits of SL (2,R) fall into three basic classes; according to whether the Casimir function B (Z,Z) = h + xy is positive, negative or zero.(Here Z ≡ x ∗X + h ∗H + y ∗ Y .) The nature of these orbits becomes a little clear if we adopt a basis for which B is diagonal, setting Z0 = X − Y Z2 = X + Y Z3 = H we find B (Z,Z) = −z 0 + z 2 + z 3 That is, the invariant bilinear form on g looks like the Lorentz metric on R. And, in fact, the orbit structure of g looks like that of (2+1)-dimensional Minkowki spacetime; thinking of z0 as the “temperal coordinate” and z1 and z2 as the “spatial coordinates”. The three orbit classes are

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Orbit Method for the Jacobi Group

g∗ −→ g, λ 7→ Xλ characterized by λ(Y ) =< Xλ, Y >, Y ∈ g. Therefore the coadjoint G-orbits in g∗ may be identified with adjoint G-orbits in g. The philosophy of the orbit method says that we may attach the irreducible unitary representations of G to the coadjoint orbits in g∗. Historically the orbit method that was first initiated by A.A. Kirillov (cf. [K]) early in the 1960s in a real nilpote...

متن کامل

Rings of Regular Functions on Spherical Nilpotent Orbits for Complex Classical Groups

Let G be a classical group and let g be its Lie algebra. For a nilpotent element X E g, the ring R(Ox) of regular functions on the nilpotent orbit Ox is a Gmodule. In this thesis, we will decompose it into irreducible representations of G for some spherical nilpotent orbits. Thesis Supervisor: David Alexander Vogan Title: Professor of Mathematics

متن کامل

Remarks on Springer’s Representations

We give an explicit description of a set of irreducible representations of a Weyl group which parametrizes the nilpotent orbits in the Lie algebra of a connected reductive group in arbitrary characteristic. We also answer a question of Serre concerning the conjugacy class of a power of a unipotent element in a connected reductive group.

متن کامل

Lusztig’s Canonical Quotient and Generalized Duality

We give a new characterization of Lusztig’s canonical quotient, a finite group attached to each special nilpotent orbit of a complex semisimple Lie algebra. This group plays an important role in the classification of unipotent representations of finite groups of Lie type. We also define a duality map. To each pair of a nilpotent orbit and a conjugacy class in its fundamental group, the map assi...

متن کامل

Hilbert spaces for certain unipotent representations III

In this paper we construct a family of small unitary representations for real semisimple Lie groups associated with Jordan algebras. These representations are realized on L-spaces of certain orbits in the Jordan algebra. The representations are spherical and one of our key results is a precise L-estimate for the Fourier transform of the spherical vector. We also consider the tensor products of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006