Leray in Oflag XVIIA: The origins of sheaf theory, sheaf cohomology, and spectral sequences
نویسنده
چکیده
Jean Leray (November 7, 1906–November 10, 1998) was confined to an officers’ prison camp (“Oflag”) in Austria for the whole of World War II. There he took up algebraic topology, and the result was a spectacular flowering of highly original ideas, ideas which have, through the usual metamorphism of history, shaped the course of mathematics in the sixty years since then. Today we would divide his discoveries into three parts: sheaves, sheaf cohomology, and spectral sequences. For the most part these ideas became known only after the war ended, and fully five more years passed before they became widely understood. They now stand at the very heart of much of modern mathematics. I will try to describe them, how Leray may have come to them, and the reception they received.
منابع مشابه
Abstract Homotopy Theory and Generalized Sheaf Cohomology
HOMOTOPY THEORY AND GENERALIZED SHEAF COHOMOLOGY BY KENNETHS. BROWN0) ABSTRACT. Cohomology groups Ha(X, E) are defined, where X is a topological space and £ is a sheaf on X with values in Kan's category of spectra. These groups generalize the ordinary cohomology groups of X with coefficients in an abelian sheaf, as well as the generalized cohomology of X in the usual sense. The groups are defin...
متن کاملApplications of Sheaf Cohomology and Exact Sequences on Network Codings
Sheaf cohomology is a mathematical tool for collating local algebraic data into global structures. The purpose of this paper is to apply sheaf theory into network coding problems. After the definition of sheaves, we define so called network coding sheaves for a general multi source network coding scenario, and consider various forms of sheaf cohomologies. The main theorem states that 0-th netwo...
متن کاملOrdinary and Generalized Sheaf Cohomology
This article is expanded from a talk given by the author in (the preliminary version of) the Student Algebraic Topology seminar in University of Michigan, Ann Arbor. The rst part will be a review of ordinary sheaf cohomology which is done in such a way that generalization to generalized sheaf cohomology theory becomes automatic. The second part is a quick introduction of the approach to general...
متن کاملFuzzy Acts over Fuzzy Semigroups and Sheaves
lthough fuzzy set theory and sheaf theory have been developed and studied independently, Ulrich Hohle shows that a large part of fuzzy set theory is in fact a subfield of sheaf theory. Many authors have studied mathematical structures, in particular, algebraic structures, in both categories of these generalized (multi)sets. Using Hohle's idea, we show that for a (universal) algebra $A$, th...
متن کاملVector Bundle Extensions, Sheaf Cohomology, and the Heterotic Standard Model
Stable, holomorphic vector bundles are constructed on an torus fibered, non-simply connected Calabi-Yau threefold using the method of bundle extensions. Since the manifold is multiply connected, we work with equivariant bundles on the elliptically fibered covering space. The cohomology groups of the vector bundle, which yield the low energy spectrum, are computed using the Leray spectral sequen...
متن کامل