Thermochemistry and Kinetics of Silicon Hydride Cluster Formation during Thermal Decomposition of Silane
نویسندگان
چکیده
Product contamination by particles nucleated within the processing environment often limits the deposition rate during chemical vapor deposition processes. A fundamental understanding of how these particles nucleate could allow higher growth rates while minimizing particle contamination. Here we present an extensive chemical kinetic mechanism for silicon hydride cluster formation during silane pyrolysis. This mechanism includes detailed chemical information about the relative stability and reactivity of different possible silicon hydride clusters. It provides a means of calculating a particle nucleation rate that can be used as the nucleation source term in aerosol dynamics models that predict particle formation, growth, and transport. A group additivity method was developed to estimate thermochemical properties of the silicon hydride clusters. Reactivity rules for the silicon hydride clusters were proposed based on the group additivity estimates for the reaction thermochemistry and the analogous reactions of smaller silicon hydrides. These rules were used to generate a reaction mechanism consisting of reversible reactions among silicon hydrides containing up to 10 silicon atoms and irreversible formation of silicon hydrides containing 11-20 silicon atoms. The resulting mechanism was used in kinetic simulations of clustering during silane pyrolysis in the absence of any surface reactions. Results of those simulations are presented, along with reaction path analyses in which key reaction paths and rate-limiting steps are identified and discussed.
منابع مشابه
Modeling the Nucleation Kinetics and Aerosol Dynamics of Particle Formation during Cvd of Silicon from Silane
Product contamination by gas-phase nucleation within the processing environment often limits the deposition rate that can be obtained during chemical vapor deposition (CVD) of materials for microelectronics applications. A fundamental understanding of how these particles nucleate and grow may allow us to enlarge the process envelope, providing higher growth rates without particle contamination....
متن کاملThe pyrolytic decomposition of metal alkoxides (di-acetoxy-di-t-butoxy-silane, DADBS) during chemical vapour deposition of thin oxide films
In this study the effects of the nature of metal alkoxides on their vapour pressures and thermal decomposition chemistry are reported. The vapour pressure and the volatility of a metal alkoxide strongly depends on the steric effect of its alkoxy group. The thermal decomposition chemistry of one metal alkoxide (di-acetoxy-di-t-butoxysilane, DADBS) has been studied by mass spectrometry at tempera...
متن کاملModelling of silicon hydride clustering in a low-pressure silane plasma
A new silicon hydride clustering model was developed to study the nucleation of particles in a low-temperature silane plasma. The model contains neutral silanes, silylenes, silenes and silyl radicals as well as silyl and silylene anions. Reaction rates were estimated from available data. Simulations were carried out for typical discharge parameters in a capacitive plasma. It was shown that the ...
متن کاملModeling particle formation during low-pressure silane oxidation: Detailed chemical kinetics and aerosol dynamics
A detailed chemical kinetic model is presented for silicon oxide clustering that leads to particle nucleation during low-pressure silane oxidation. Quantum Rice–Ramsperger–Kassel theory was applied to an existing high-pressure silane oxidation mechanism to obtain estimates for the pressure dependence of rate parameters. Four classes of clustering pathways were considered based on current knowle...
متن کاملModeling gas-phase nucleation in inductively coupled silane-oxygen plasmas
A detailed chemical kinetics mechanism was developed to model silicon oxide clustering during high density plasma chemical vapor deposition of SiO2 films from silane-oxygen–argon mixtures. An inductively coupled plasma reactor was modeled in a one-dimensional multicomponent two-temperature framework. Spatial distributions of species concentrations were calculated. The effects of discharge param...
متن کامل