Therapeutic promise of proteinase-activated receptor-2 antagonism in joint inflammation.
نویسندگان
چکیده
Biological therapies such as tumor necrosis factor-alpha inhibitors have advanced the treatment of rheumatoid arthritis, but one-third of patients do not respond to such therapy. Furthermore, these inhibitors are now usually administered in combination with conventional disease-modifying antirheumatic drugs, suggesting they have not achieved their early promise. This study investigates a novel therapeutic target, proteinase-activated receptor (PAR)-2, in joint inflammation. Intra-articular carrageenan/kaolin (C/K) injection in mice resulted in joint swelling that was associated with synovial PAR2 up-regulation. Inhibiting receptor up-regulation using small interfering RNA technology, as confirmed by immunoblotting, substantially reduced the inflammatory response in the joint. Serine proteinase-induced joint swelling was mediated primarily via PAR2 activation, since the response to exogenous application of trypsin and tryptase was absent in PAR2 knockout mice. Furthermore, serine proteinase inhibitors were effective anti-inflammatory agents in this model. Disrupting proteolytic activation of PAR2 using antiserum (B5) directed to the receptor cleavage/activation site also attenuated C/K-induced inflammation, as did the similarly targeted PAR2 monoclonal antibody SAM-11. Finally, we report the activity of a novel small molecule PAR2 antagonist, N1-3-methylbutyryl-N4-6-aminohexanoyl-piperazine (ENMD-1068), that dose dependently attenuated joint inflammation. Our findings represent a major advance in collectively identifying PAR2 as a novel target for the future treatment of arthritis.
منابع مشابه
Essential role for proteinase-activated receptor-2 in arthritis.
Using physiological, pharmacological, and gene disruption approaches, we demonstrate that proteinase-activated receptor-2 (PAR-2) plays a pivotal role in mediating chronic inflammation. Using an adjuvant monoarthritis model of chronic inflammation, joint swelling was substantially inhibited in PAR-2-deficient mice, being reduced by more than fourfold compared with wild-type mice, with virtually...
متن کاملBasic and translational research on proteinase-activated receptors: implication of proteinase/proteinase-activated receptor in gastrointestinal inflammation.
Recently, the role of serine proteinases in the pathogenesis of inflammation and autoimmune diseases via interaction with the proteinase-activated receptor (PAR) has attracted attention. Activation of PAR has a pro-inflammatory effect through the overproduction of inflammatory cytokines such as interleukin (IL)-6 and IL-8. PAR(2) activation in human esophageal epithelial cells by trypsin induce...
متن کاملThe proteinase-activated receptor 2 is involved in nociception.
The proteinase-activated receptor 2 is expressed on a subset of primary afferent neurons and may participate in the neurogenic component of inflammation. We hypothesized that this receptor may also play a role in neuronal sensitization and contribute to the pathogenesis of pain in inflammatory conditions such as pancreatitis. Using a specific proteinase-activated receptor 2 activating peptide, ...
متن کاملA role for proteinase-activated receptor-1 in inflammatory bowel diseases.
Proteinase-activated receptor-1 (PAR1), a G protein-coupled receptor activated by thrombin, is highly expressed in different cell types of the gastrointestinal tract. The activity of thrombin and of other proteinases is significantly increased in the colon of inflammatory bowel disease (IBD) patients. Since PAR1 activation in tissues other than the gut provoked inflammation, we hypothesized tha...
متن کاملNociceptive tolerance is improved by bradykinin receptor B1 antagonism and joint morphology is protected by both endothelin type A and bradykinin receptor B1 antagonism in a surgical model of osteoarthritis
INTRODUCTION Endothelin-1, a vasoconstrictor peptide, influences cartilage metabolism mainly via endothelin receptor type A (ETA). Along with the inflammatory nonapeptide vasodilator bradykinin (BK), which acts via bradykinin receptor B1 (BKB1) in chronic inflammatory conditions, these vasoactive factors potentiate joint pain and inflammation. We describe a preclinical study of the efficacy of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 316 3 شماره
صفحات -
تاریخ انتشار 2006