One Dimensional Representation of Two Dimensional Information for HMM based Handwritten Recognition
نویسندگان
چکیده
In this study, we introduce a new set of one-dimensional discrete, constant length features to represent two dimensional shape information for HMM (Hidden Markov Model), based handwritten optical character recognition problem. The proposed feature set embeds the two dimensional information into a sequence of onedimensional codes, selected @om a code book. It provides a consistent normalization among distinct classes of shapes, which is very convenient for HMM based shape recognition schemes. The new feature set is used in a handwritten optical character recognition scheme, where a sequence of segmentation and recognition stages is employed. The normalization parameters, which maximize the recognition rate, are dynamical2y estimated in the training stage of HMM. The proposed character recognition system is tested on both a locally generated cursively handwritten data and isolated number digits of NIST database. The experimental results indicate high recognition rates.
منابع مشابه
One-dimensional representation of two-dimensional information for HMM based handwriting recognition
In this study, we introduce a set of one-dimensional features to represent two dimensional shape information for HMM (Hidden Markov Model) based handwritten optical character recognition problem. The proposed feature set embeds two-dimensional information into an observation sequence of one-dimensional string, selected from a code-book. It provides a consistent normalization among distinct clas...
متن کاملOff-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model
In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...
متن کاملHolistic Farsi handwritten word recognition using gradient features
In this paper we address the issue of recognizing Farsi handwritten words. Two types of gradient features are extracted from a sliding vertical stripe which sweeps across a word image. These are directional and intensity gradient features. The feature vector extracted from each stripe is then coded using the Self Organizing Map (SOM). In this method each word is modeled using the discrete Hidde...
متن کاملHandwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns
The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...
متن کاملMAN-MACHINE INTERACTION SYSTEM FOR SUBJECT INDEPENDENT SIGN LANGUAGE RECOGNITION USING FUZZY HIDDEN MARKOV MODEL
Sign language recognition has spawned more and more interest in human–computer interaction society. The major challenge that SLR recognition faces now is developing methods that will scale well with increasing vocabulary size with a limited set of training data for the signer independent application. The automatic SLR based on hidden Markov models (HMMs) is very sensitive to gesture's shape inf...
متن کامل