Crystallization of a perovskite film for higher performance solar cells by controlling water concentration in methyl ammonium iodide precursor solution.

نویسندگان

  • Nirmal Adhikari
  • Ashish Dubey
  • Eman A Gaml
  • Bjorn Vaagensmith
  • Khan Mamun Reza
  • Sally Adel Abdelsalam Mabrouk
  • Shaopeng Gu
  • Jiantao Zai
  • Xuefeng Qian
  • Qiquan Qiao
چکیده

An optimal small amount of water added into methyl ammonium iodide (MAI) solution in isopropyl alcohol (IPA) helps perovskite crystallization and leads to larger grain size from sequential deposition of perovskite films. The concentration of water was varied from 1% to 7% (vol% of IPA) in MAI solution and optical absorption, crystallization, morphology of perovskite films and their photovoltaic performance were studied in perovskite solar cells. 5% by volume was found to lead to preferential crystallization in the (110) plane with grain size about three times that of perovskite films prepared without adding water into the MAI solution. The optimal water concentration of 5% by volume in the MAI solution led to average perovskite grain size of ∼600 nm and solar cell efficiency of 12.42% at forward scan with a rate of 0.5 V s(-1). Device performance decreases after increasing water concentration beyond 5% in the MAI solution due to formation of the PbI2 phase. Transient photocurrent and photovoltage measurements show the shortest charge transport time at 0.99 μs and the longest charge carrier life time at 13.6 μs for perovskite films prepared from 5% water in MAI solution, which improved perovskite solar cell efficiency from 9.04% to 12.42%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells.

We report an effective solvent engineering process to enable controlled perovskite crystal growth and a wider window for processing uniform and dense methyl ammonium lead iodide (MAPbI3) perovskite films. Planar heterojunction solar cells fabricated with this method demonstrate hysteresis-free performance with a power conversion efficiency around 10%. The crystal structure of an organic-based P...

متن کامل

High efficient Perovskite solar cells base on Niobium Doped TiO2 as a Buffer Layer

Here, the effect of lightly Niobium doped TiO2 layer on the performance of perovskite solar cells has been studied by using solar cell capacitance simulator (SCAPS). N addition, the effects of Niobium concentration, buffer film thickness and operating temperature on the performance of the perovskite solar cell are investigated. For doping level of 3.0 mol% into the TiO2 layer, cell efficiency o...

متن کامل

A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells.

Thin-film photovoltaics based on alkylammonium lead iodide perovskite light absorbers have recently emerged as a promising low-cost solar energy harvesting technology. To date, the perovskite layer in these efficient solar cells has generally been fabricated by either vapor deposition or a two-step sequential deposition process. We report that flat, uniform thin films of this material can be de...

متن کامل

Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films.

Solar cells based on organic-inorganic lead iodide perovskite (CH3NH3PbI3) exhibit remarkably high power conversion efficiency (PCE). One of the key issues in solution-processed films is that often the polycrystalline domain orientation is not well-defined, which makes it difficult to predict energy alignment and charge transfer efficiency. Here we combine ab initio calculations and photoelectr...

متن کامل

Efficient perovskite solar cells fabricated using an aqueous lead nitrate precursor.

A novel, aqueous precursor system (Pb(NO3)2 + water) is developed to replace conventional (PbI2 + DMF) for fabricating methylammonium lead iodide (MAPbI3) perovskite solar cells (PSCs). When the morphology and surface coverage of the Pb(NO3)2 film was controlled during coating, a power conversion efficiency of 12.58% under standard conditions (AM1.5, 100 mW cm(-2)) was achieved for the PSC.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 8 5  شماره 

صفحات  -

تاریخ انتشار 2016