How Noisy Does a Noisy Miner Have to Be? Amplitude Adjustments of Alarm Calls in an Avian Urban ‘Adapter’

نویسندگان

  • Hélène Lowry
  • Alan Lill
  • Bob B. M. Wong
چکیده

BACKGROUND Urban environments generate constant loud noise, which creates a formidable challenge for many animals relying on acoustic communication. Some birds make vocal adjustments that reduce auditory masking by altering, for example, the frequency (kHz) or timing of vocalizations. Another adjustment, well documented for birds under laboratory and natural field conditions, is a noise level-dependent change in sound signal amplitude (the 'Lombard effect'). To date, however, field research on amplitude adjustments in urban environments has focused exclusively on bird song. METHODS We investigated amplitude regulation of alarm calls using, as our model, a successful urban 'adapter' species, the Noisy miner, Manorina melanocephala. We compared several different alarm calls under contrasting noise conditions. RESULTS Individuals at noisier locations (arterial roads) alarm called significantly more loudly than those at quieter locations (residential streets). Other mechanisms known to improve sound signal transmission in 'noise', namely use of higher perches and in-flight calling, did not differ between site types. Intriguingly, the observed preferential use of different alarm calls by Noisy miners inhabiting arterial roads and residential streets was unlikely to have constituted a vocal modification made in response to sound-masking in the urban environment because the calls involved fell within the main frequency range of background anthropogenic noise. CONCLUSIONS The results of our study suggest that a species, which has the ability to adjust the amplitude of its signals, might have a 'natural' advantage in noisy urban environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traffic noise drowns out great tit alarm calls

Anthropogenic noise is one of the fastest growing and most ubiquitous types of environmental pollution and can impair acoustic communication in a variety of animals [1]. Recent research has shown that birds can adjust acoustic parameters of their sexual signals (songs) in noisy environments [2,3], yet we know little about other types of vocalizations. Anti-predator signals contain subtle inform...

متن کامل

A micro-geography of fear: learning to eavesdrop on alarm calls of neighbouring heterospecifics.

Many vertebrates eavesdrop on alarm calls of other species, which is a remarkable ability, given geographical variation in community composition and call diversity within and among species. We used micro-geographical variation in community composition to test whether individuals recognize heterospecific alarm calls by: (i) responding to acoustic features shared among alarm calls; (ii) having in...

متن کامل

Noisy images edge detection: Ant colony optimization algorithm

The edges of an image define the image boundary. When the image is noisy, it does not become easy to identify the edges. Therefore, a method requests to be developed that can identify edges clearly in a noisy image. Many methods have been proposed earlier using filters, transforms and wavelets with Ant colony optimization (ACO) that detect edges. We here used ACO for edge detection of noisy ima...

متن کامل

Identification of Cement Rotary Kiln in Noisy Condition using Takagi-Sugeno Neuro-fuzzy System

Cement rotary kiln is the main part of cement production process that have always attracted many researchers’ attention. But this complex nonlinear system has not been modeled efficiently which can make an appropriate performance specially in noisy condition. In this paper Takagi-Sugeno neuro-fuzzy system (TSNFS) is used for identification of cement rotary kiln, and gradient descent (GD) algori...

متن کامل

A method to solve the problem of missing data, outlier data and noisy data in order to improve the performance of human and information interaction

Abstract Purpose: Errors in data collection and failure to pay attention to data that are noisy in the collection process for any reason cause problems in data-based analysis and, as a result, wrong decision-making. Therefore, solving the problem of missing or noisy data before processing and analysis is of vital importance in analytical systems. The purpose of this paper is to provide a metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012