PhyR is involved in the general stress response of Methylobacterium extorquens AM1.

نویسندگان

  • Benjamin Gourion
  • Anne Francez-Charlot
  • Julia A Vorholt
چکیده

PhyR represents a novel alphaproteobacterial family of response regulators having a structure consisting of two domains; a predicted amino-terminal extracytoplasmic function (ECF) sigma factor-like domain and a carboxy-terminal receiver domain. PhyR was first described in Methylobacterium extorquens AM1, in which it has been shown to be essential for plant colonization, probably due to its suggested involvement in the regulation of a number of stress proteins. Here we investigated the PhyR regulon using microarray technology. We found that the PhyR regulon is rather large and that most of the 246 targets are under positive control. Mapping of transcriptional start sites revealed candidate promoters for PhyR-mediated regulation. One of these promoters, an ECF-type promoter, was identified upstream of one-third of the target genes by in silico analysis. Among the PhyR targets are genes predicted to be involved in multiple stress responses, including katE, osmC, htrA, dnaK, gloA, dps, and uvrA. The induction of these genes is consistent with our phenotypic analyses which revealed that PhyR is involved in resistance to heat shock and desiccation, as well as oxidative, UV, ethanol, and osmotic stresses, in M. extorquens AM1. The finding that PhyR is involved in the general stress response was further substantiated by the finding that carbon starvation induces protection against heat shock and that this protection is at least in part dependent on PhyR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple σEcfG and NepR Proteins Are Involved in the General Stress Response in Methylobacterium extorquens

In Alphaproteobacteria, the general stress response (GSR) is controlled by a conserved partner switch composed of the sigma factor σ(EcfG), its anti-sigma factor NepR and the anti-sigma factor antagonist PhyR. Many species possess paralogues of one or several components of the system, but their roles remain largely elusive. Among Alphaproteobacteria that have been genome-sequenced so far, the g...

متن کامل

A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth.

Aerial plant surfaces are colonized by diverse bacteria such as the ubiquitous Methylobacterium spp. The specific physiological traits as well as the underlying regulatory mechanisms for bacterial plant colonization are largely unknown. The purpose of this study was to identify proteins produced specifically in the phyllosphere by comparing the proteome of Methylobacterium extorquens colonizing...

متن کامل

Comprehensive molecular characterization of Methylobacterium extorquens AM1 adapted for 1-butanol tolerance

BACKGROUND The toxicity of alcohols is one of the major roadblocks of biological fermentation for biofuels production. Methylobacterium extorquens AM1, a facultative methylotrophic α-proteobacterium, has been engineered to generate 1-butanol from cheap carbon feedstocks through a synthetic metabolic pathway. However, M. extorquens AM1 is vulnerable to solvent stress, which impedes further devel...

متن کامل

Dual control of Sinorhizobium meliloti RpoE2 sigma factor activity by two PhyR-type two-component response regulators.

RpoE2 is an extracytoplasmic function (ECF) sigma factor involved in the general stress response of Sinorhizobium meliloti, the nitrogen-fixing symbiont of the legume plant alfalfa. RpoE2 orthologues are widely found among alphaproteobacteria, where they play various roles in stress resistance and/or host colonization. In this paper, we report a genetic and biochemical investigation of the mech...

متن کامل

The small-subunit polypeptide of methylamine dehydrogenase from Methylobacterium extorquens AM1 has an unusual leader sequence.

The nucleotide sequence for the N-terminal region of the small subunit of methylamine dehydrogenase from Methylobacterium extorquens AM1 has revealed a leader sequence that is unusual in both its length and composition. Gene fusions to lacZ and phoA show that this leader sequence does not function in Escherichia coli but does function in M. extorquens AM1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 190 3  شماره 

صفحات  -

تاریخ انتشار 2008