Formation and propagation of coupled ultraslow optical soliton pairs in a cold three-state double- system.

نویسندگان

  • Guoxiang Huang
  • Kaijun Jiang
  • M G Payne
  • L Deng
چکیده

We investigate the simultaneous formation and propagation of coupled ultraslow optical soliton pairs in a cold, lifetime-broadened three-state double-Lambda atomic system. Starting from the equations of motion of atomic response and two-mode probe-control electromagnetic fields, we derive coupled nonlinear Schrödinger equations that govern the nonlinear evolution of the envelopes of the probe fields in this four-wave mixing scheme by means of the standard method of multiple scales. We demonstrate that for weak probe fields and with suitable operation conditions, a pair of coupled optical solitons moving with remarkably slow propagating velocity can be established in such a highly resonant atomic medium. The key elements to such a shape preserving, well matched yet interacting soliton pair is the balance between dispersion effect and self- and cross-phase modulation effects of the system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Propagation of Incoherently Coupled Soliton Pairs in Photorefractive Crystals and their Self-Deflection

Propagation of incoherently soliton pairs in photorefractive crystals under steady-state conditions is studied. These soliton states can be generated when the two mutually incoherent optical beams with the same polarization and wavelength incident on the biased photorefractive crystal. Such soliton pairs can exist in bright-bright, dark-dark, gray-gray as well as in bright-dark types. In this p...

متن کامل

Spatial soliton pairs in an unbiased photovoltaic-photorefractive crystal circuit

: Optical separate spatial dark and bright soliton pairs in steady-state case in one dimension, for a series circuit consisting of two-photon photorefractive (PR) crystal are investigated. Each crystal can be supported the spatial soliton, and at least one must be photovoltaic. The two solitons are known collectively as separate spatial soliton pairs with dark–dark, bright–dark and bright–brigh...

متن کامل

Ultraslow bright and dark solitons in semiconductor quantum wells

We study the low-intensity light pulse propagation through an asymmetric double quantum well via Fanotype interference based on intersubband transitions. The propagation of the pulse across the quantum well is studied analytically and numerically with the coupled Maxwell-Schrödinger equations. We show the generation of ultraslow bright and dark optical solitons in this system. Whether the solit...

متن کامل

All-Optical Reconfigurable-Tunable 1×N Power Splitter Using Soliton Breakup

In this paper, we numerically simulated a glass-based all-optical 1×N power splitter with eleven different configurations using soliton breakup in a nonlinear medium. It is shown that in addition to reconfigurability of the proposed splitter, its power splitting ratio is tunable up to some extent values too. Nonlinear semivectorial iterative finite difference beam propagation method (IFD-...

متن کامل

Matched ultraslow propagation of highly efficient four-wave mixing in a closely cycled double-ladder system

We present a fully time dependent, adiabatic solution, and steady-state analysis for the ultraslow propagation of the nondegenerate four-wave mixing NDFWM signal and the weak probe beam in a closely-cycled double-ladder system. Under appropriate especially power balance conditions, the two-mode probe and phase-matched NDFWM pulses, after a characteristic propagation length, evolve into a pair o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 73 5 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2006