The Impact of Southern Ocean Sea Ice in a Global Ocean Model
نویسندگان
چکیده
Most of the Southern Ocean (SO) is marginally stably stratified and thus prone to enhanced convection and possibly bottom-water formation whenever the upper ocean is cooled or made more saline by ice formation. Sea ice modifies the heat and freshwater fluxes, which in turn constitute a critical surface condition in this sensitive region of intense vertical exchange. The authors investigate the effect of SO sea ice in modifying these fluxes in a global, coarse-resolution, primitive-equation ocean general circulation model, which has been coupled to a comprehensive dynamic–thermodynamic sea ice model. Specifically, the long-term impact of a series of modifications in the formulation of the sea ice model and its forcing on quantities such as the overturning circulation, the deep ocean water-mass characteristics, the sea ice thickness, the strength of convection, as well as the strength of the major volume transports are investigated. The results indicate that the rate of Antarctic bottom-water formation is strongly coupled to the local sea ice processes in the SO, which in turn vary sensitively depending on their model formulation and their forcing from the atmosphere. The largest impacts arise from the effect of brine release due to sea ice formation and that of employing more variable winds over SO sea ice.
منابع مشابه
Influence of the Southern Annular Mode on the sea ice-ocean system: the role of the thermal and mechanical forcing
The global sea ice-ocean model ORCA2-LIM is used to investigate the impact of the thermal and mechanical forcing associated with the Southern Annular Mode (SAM) on the Antarctic sea ice-ocean system. The model is driven by idealized forcings based on regressions between the wind stress and the air temperature at one hand and the SAM index the other hand. The wind-stress component strongly affec...
متن کاملInterhemispheric asymmetry in transient global warming: The role of Drake Passage
[1] Climate models predict that the Northern Hemisphere (NH) will warm faster than the Southern Hemisphere (SH) in response to increasing greenhouse gases, and observations show that this trend has already begun to occur. This interhemispheric asymmetry has largely been attributed to land-ocean differences between the hemispheres and Arctic sea ice melt, while the role of ocean currents in sett...
متن کاملOcean Currents Modeling along the Iranian Coastline of the Oman Sea and the Northern Indian Ocean
The Makran Coast (Iranian Coastline of the Oman Sea on the Northern Indian Ocean) plays an important role in country’s future navigation and trade due to its accessibility. In 2014, the Iranian Makran coastline was selected by the PMO to be studied as the Phase 6 in the series of Monitoring and Modelling Studies of Iranian Coasts with all disciplines being in investigated including currents. Al...
متن کاملModeling Global Sea Ice with a Thickness and Enthalpy Distribution Model in Generalized Curvilinear Coordinates
A parallel ocean and ice model (POIM) in generalized orthogonal curvilinear coordinates has been developed for global climate studies. The POIM couples the Parallel Ocean Program (POP) with a 12-category thickness and enthalpy distribution (TED) sea ice model. Although the POIM aims at modeling the global ocean and sea ice system, the focus of this study is on the presentation, implementation, ...
متن کاملSouthern Ocean frontal structure and sea-ice formation rates revealed by elephant seals.
Polar regions are particularly sensitive to climate change, with the potential for significant feedbacks between ocean circulation, sea ice, and the ocean carbon cycle. However, the difficulty in obtaining in situ data means that our ability to detect and interpret change is very limited, especially in the Southern Ocean, where the ocean beneath the sea ice remains almost entirely unobserved an...
متن کامل