Improving Thermal Performance of Radioactive Material Drum Type Packages by Using Heat Pipes
نویسنده
چکیده
This paper presents a feasibility study to improve thermal loading of existing radioactive material packages by using heat pipes. The concept could be used to channel heat in certain directions and dissipate to the environment. The concept is applied to a drum type package because the drum type packages are stored and transported in an upright position. This orientation is suitable for heat pipe operation that could facilitate the heat pipe implementation in the existing well proven package designs or in new designs where thermal loading is high. In this position, heat pipes utilize gravity very effectively to enhance heat flow in the upward direction Heat pipes have extremely high effective thermal conductivity that is several magnitudes higher than the most heat conducting metals. In addition, heat pipes are highly unidirectional so that the effective conductivity for heat transfer in the reverse direction is greatly reduced. The concept is applied to the 9977 package that is currently going through the DOE certification review. The paper presents computer simulations using typical of–the-shelf heat pipe available configurations and performance data for the 9977 package. A path forward is outlined for implementing the concepts for further study and prototype testing.
منابع مشابه
Effect of Using Nano Encapsulated Phase Change Material on Thermal Performance of Micro Heat Sink
The aim of this paper is to enhance thermal performance of a microchannel heat sink by using nanoencapsulated phase change material (NEPCM) slurry as a cooling fluid instead of pure fluid. A threedimensional model of a circular channel using water slurry of NEPCM was developed. The results show a significant reduction in the mean fluid temperature along the channel and heat sink wall temperatu...
متن کاملExperimental Investigation of Heat Transfer Enhancement in a Finned U-Shaped Heat Pipe of CPU Cooling System Using Different Fluids
This paper experimentally studies the heat absorption performance of a heat sink with vertical embedded heat pipes in the aluminum blade. The cooling system with embedded heat pipes distributes heat from the CPU to both the base plate and the heat pipes, and then transfer heat from fins to the Environment. The thermal resistance and heat transfer coefficient are evaluated for natural convection...
متن کاملExperimental Investigation on CuO/Water Nanofluid Effect on the Heat Transfer Rate of Heat Pipe Network
In this study, a new configuration of heat pipes as Heat Pipe Network is introduced. Here, the heat pipe network is designed, constructed and then has been under the performance assessment. This heat pipe network consists of 4 vertical heat pipes connected to evaporator collector from bottom and condenser collector from top. In order to investigate the effect of nanofluids on the thermal effici...
متن کاملImproving for Drum_Buffer_Rope material flow management with attention to second bottlenecks and free goods in a job shop environment
Drum–Buffer–Rope is a theory of constraints production planning methodology that operates by developing a schedule for the system’s first bottleneck. The first bottleneck is the bottleneck with the highest utilization. In the theory of constraints, any job that is not processed at the first bottleneck is referred to as a free good. Free goods do not use capacity at the first bottleneck, so very...
متن کاملNovel Thermal Resistance Network Analysis of Heat Sink with Embedded Heat Pipes
This article utilizes the experimental method to investigate the thermal performance of heat sinks with one and two pairs of embedded heat pipes. A heat sink with embedded heat pipes transfers the total heat capacity from the heat source to both the base plate and heat pipes, and then disperses heat into the surrounding air via the forced convection. The heat transference from base plate to fin...
متن کامل