A Millimeter Scale Flexural Testing System for Measuring the Mechanical Properties of Marine Sponge Spicules.

نویسندگان

  • Michael A Monn
  • Jarod Ferreira
  • Jianzhe Yang
  • Haneesh Kesari
چکیده

Many load bearing biological structures (LBBSs)-such as feather rachises and spicules-are small (<1 mm) but not microscopic. Measuring the flexural behavior of these LBBSs is important for understanding the origins of their remarkable mechanical functions. We describe a protocol for performing three-point bending tests using a custom-built mechanical testing device that can measure forces ranging from 10-5 to 101 N and displacements ranging from 10-7 to 10-2 m. The primary advantage of this mechanical testing device is that the force and displacement capacities can be easily adjusted for different LBBSs. The device's operating principle is similar to that of an atomic force microscope. Namely, force is applied to the LBBS by a load point that is attached to the end of a cantilever. The load point displacement is measured by a fiber optic displacement sensor and converted into a force using the measured cantilever stiffness. The device's force range can be adjusted by using cantilevers of different stiffnesses. The device's capabilities are demonstrated by performing three-point bending tests on the skeletal elements of the marine sponge Euplectella aspergillum. The skeletal elements-known as spicules-are silica fibers that are approximately 50 µm in diameter. We describe the procedures for calibrating the mechanical testing device, mounting the spicules on a three-point bending fixture with a ≈1.3 mm span, and performing a bending test. The force applied to the spicule and its deflection at the location of the applied force are measured.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new structure-property connection in the skeletal elements of the marine sponge Tethya aurantia that guards against buckling instability

We identify a new structure-property connection in the skeletal elements of the marine sponge Tethya aurantia. The skeletal elements, known as spicules, are millimeter-long, axisymmetric, silica rods that are tapered along their lengths. Mechanical designs in other structural biomaterials, such as nacre and bone, have been studied primarily for their benefits to toughness properties. The struct...

متن کامل

Flexural and Impact Properties of Stainless Steel based Glass Fibre Reinforced Fibre Metal Laminate under Hygrothermal Conditioning

Fibre metal laminates (FMLs) have appeared as the most suitable materials for shipbuilding, aeronautical and aerospace applications due to their superior mechanical properties over traditional materials. In this paper, degradation in flexural and impact properties of glass fibre/epoxy composite (GF/E composite) and stainless steel glass fibre/epoxy fibre metal laminate (SS FML) due to hygrother...

متن کامل

Environmental Effects on Mechanical Properties of Glass/Epoxy and Fiber Metal Laminates, Part I: Hygrothermal Aging

In this article, the effect of hygrothermal aging on mechanical properties of fiber metal laminates (FMLs) and E-glass/epoxy (GE) composites is investigated. First, FML and GE specimens were built using wet lay-up technique under vacuum pressure. Hygrothermal aging simulation was then carried out on both specimen types in distilled water at a constant temperature of 90 °C for 5 weeks. The resul...

متن کامل

Experimental investigation of mechanical and dynamic impact properties of high strength cementitious composite containing micro steel and PP fibers

Cementitious composites are one of the most consumed construction materials in the world. The use of cementitious composites is increasing due to their special characteristics. The behavior of high strength cementitious composites is improved by increasing the fiber percentage. In the present paper, the effects of steel microfibers and polypropylene fibers on mechanical properties and impact re...

متن کامل

Tensile and Flexural Analysis of a Hybrid Bamboo/Jute Fiber-reinforced Composite with Polyester Matrix as a Sustainable Green Material for Wind Turbine Blades

Recently, there has been a fast growth in research and investigation in the natural fibre composite due to the advantages of these materials, such us low environmental impact, low cost and good mechanical properties compared to synthetic fibre composites. Much effort has gone into increasing the mechanical performance and applications of natural fibes. This paper examines the mechanical propert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of visualized experiments : JoVE

دوره 128  شماره 

صفحات  -

تاریخ انتشار 2017