Quasi-hom-Lie Algebras, Central Extensions and 2-cocycle-like Identities
نویسندگان
چکیده
This paper begins by introducing the concept of a quasi-hom-Lie algebra, or simply, a qhl-algebra, which is a natural generalization of hom-Lie algebras introduced in a previous paper [14]. Quasi-hom-Lie algebras include also as special cases (color) Lie algebras and superalgebras, and can be seen as deformations of these by homomorphisms, twisting the Jacobi identity and skew-symmetry. The natural realm for these quasi-hom-Lie algebras is as a generalization-deformation of the Witt algebra d of derivations on the Laurent polynomials C[t, t−1]. We also develop a theory of central extensions for qhl-algebras which can be used to deform and generalize the Virasoro algebra by centrally extending the deformed Witt type algebras constructed here. In addition, we give a number of other interesting examples of quasi-hom-Lie algebras, among them a deformation of the loop algebra.
منابع مشابه
On universal central extensions of Hom-Leibniz algebras
In the category of Hom-Leibniz algebras we introduce the notion of Hom-corepresentation as adequate coefficients to construct the chain complex from which we compute the Leibniz homology of Hom-Leibniz algebras. We study universal central extensions of Hom-Leibniz algebras and generalize some classical results, nevertheless it is necessary to introduce new notions of α-central extension, univer...
متن کاملUniversal Central Extension of Current Superalgebras
Representation as well as central extension are two of the most important concepts in the theory of Lie (super)algebras. Apart from the interest of mathematicians, the attention of physicist are also drawn to these two subjects because of the significant amount of their applications in Physics. In fact for physicists, the study of projective representations of Lie (super)algebras are very impo...
متن کاملHom-algebra structures
A Hom-algebra structure is a multiplication on a vector space where the structure is twisted by a homomorphism. The structure of Hom-Lie algebra was introduced by Hartwig, Larsson and Silvestrov in [4] and extended by Larsson and Silvestrov to quasi-hom Lie and quasi-Lie algebras in [5, 6]. In this paper we introduce and study Hom-associative, Hom-Leibniz, and Hom-Lie admissible algebraic struc...
متن کاملHom-algebras and Hom-coalgebras
The aim of this paper is to develop the coalgebra counterpart of the HomAlgebra notions. After reviewing some key constructions and examples of quasi-deformations of Lie algebras involving twisted derivations and giving rise to the class of quasi-Lie algebras incorporating Hom-Lie algebras, we describe the notion and some properties of Homalgebras and provide examples of formal deformations of ...
متن کاملHom - Algebras and Hom
The aim of this paper is to develop the theory of Hom-coalgebras and related structures. After reviewing some key constructions and examples of quasi-deformations of Lie algebras involving twisted derivations and giving rise to the class of quasi-Lie algebras incorporating Hom-Lie algebras, we describe the notion and some properties of Homalgebras and provide examples. We introduce Hom-coalgebr...
متن کامل