Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions.

نویسندگان

  • Piotr Garstecki
  • Howard A Stone
  • George M Whitesides
چکیده

This Letter describes a quasistationary breakup of an immiscible, inviscid fluid at low capillary numbers. The breakup proceeds in a coflowing, viscous liquid, in a confined geometry of a long and narrow orifice. In contrast to the capillary instability in an unbounded fluid, the collapse proceeds through a series of equilibria, each yielding the minimum interfacial energy of the fluid-fluid interface. The process is slow in comparison to typical relaxation speeds of the interface, and it is reversible. Its quasistatic character of collapse forms the basis for controlled, high-throughput generation of monodisperse fluid dispersions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corrugated interfaces in multiphase core-annular flow

Microfluidic devices can be used to produce highly controlled and monodisperse double or multiple emulsions. The presence of inner drops inside a jet of the middle phase introduces deformations in the jet, which leads to breakup into monodisperse double emulsions. However, the ability to generate double emulsions can be compromised when the interfacial tension between the middle and outer phase...

متن کامل

Breakup of Double Emulsions in Constrictions

and release of active materials in applications such as drug delivery, food processing and cosmetics. Compared with the hydrodynamically controlled breakup of single-phase droplets in confined geometries, active ingredients have been released by breaking the encapsulating double emulsions 20 thermally or osmotically. In some applications, such as drug delivery and oil recovery, the encapsulatin...

متن کامل

Droplet Formation by Confined Liquid Threads inside Microchannels

A confined liquid thread can form monodisperse droplets near the exit of a microchannel, provided the continuous phase is able to enter the microchannel. A general model that accurately predicts the droplet size including the breakup position inside the microchannel is presented and is verified with experimental observations; breakup occurs as long as the capillary number (Ca) of the liquid thr...

متن کامل

Kinetics of drop breakup during emulsification in turbulent flow

Systematic set of emulsification experiments is performed to elucidate the role of several factors, which control the process of drop breakup during emulsification in turbulent flow. As starting oil-water premixes we use emulsions containing monodisperse oil drops, which are generated by the method of membrane emulsification. By passing these premixes through a narrow-gap homogenizer working in...

متن کامل

Droplet Breakup in Flow Past an Obstacle: A Capillary Instability Due to Permeability Variations

In multiphase flow in confined geometries an elementary event concerns the interaction of a droplet with an obstacle. As a model of this configuration we study the collision of a droplet with a circular post that spans a significant fraction of the cross section of a microfluidic channel. We demonstrate that there exist conditions for which a drop moves completely around the obstacle without br...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 94 16  شماره 

صفحات  -

تاریخ انتشار 2005