Deep Attribute Networks
نویسندگان
چکیده
Obtaining compact and discriminative features is one of the major challenges in many of the real-world image classification tasks such as face verification and object recognition. One possible approach is to represent input image on the basis of high-level features that carry semantic meaning which humans can understand. In this paper, a model coined deep attribute network (DAN) is proposed to address this issue. For an input image, the model outputs the attributes of the input image without performing any classification. The efficacy of the proposed model is evaluated on unconstrained face verification and real-world object recognition tasks using the LFW and the a-PASCAL datasets. We demonstrate the potential of deep learning for attribute-based classification by showing comparable results with existing state-of-the-art results. Once properly trained, the DAN is fast and does away with calculating low-level features which are maybe unreliable and computationally expensive.
منابع مشابه
An artificial Neural Network approach to monitor and diagnose multi-attribute quality control processes
One of the existing problems of multi-attribute process monitoring is the occurrence of high number of false alarms (Type I error). Another problem is an increase in the probability of not detecting defects when the process is monitored by a set of independent uni-attribute control charts. In this paper, we address both of these problems and consider monitoring correlated multi-attributes proce...
متن کاملSimultaneous Monitoring of Multivariate-Attribute Process Mean and Variability Using Artificial Neural Networks
In some statistical process control applications, the quality of the product is characterized by thecombination of both correlated variable and attributes quality characteristics. In this paper, we propose anovel control scheme based on the combination of two multi-layer perceptron neural networks forsimultaneous monitoring of mean vector as well as the covariance matrix in multivariate-attribu...
متن کاملOnline Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique
In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...
متن کاملMultiscale Hierarchical Convolutional Networks
Deep neural network algorithms are difficult to analyze because they lack structure allowing to understand the properties of underlying transforms and invariants. Multiscale hierarchical convolutional networks are structured deep convolutional networks where layers are indexed by progressively higher dimensional attributes, which are learned from training data. Each new layer is computed with m...
متن کاملHierarchical Attribute CNNs
Deep neural network algorithms are difficult to analyze because they lack structure allowing to understand the properties of underlying transforms and invariants. Multiscale Hierarchical Convolutional Networks are a theoretical class of structured deep convolutional networks that constitute a framework to understand neural network classification properties. However, a naive implementation of su...
متن کاملEnd-to-end learning potentials for structured attribute prediction
We present a structured inference approach in deep neural networks for multiple attribute prediction. In attribute prediction, a common approach is to learn independent classifiers on top of a good feature representation. However, such classifiers assume conditional independence on features and do not explicitly consider the dependency between attributes in the inference process. We propose to ...
متن کامل