Estimation and Testing for Partially Linear Single-index Models.
نویسندگان
چکیده
In partially linear single-index models, we obtain the semiparametrically efficient profile least-squares estimators of regression coefficients. We also employ the smoothly clipped absolute deviation penalty (SCAD) approach to simultaneously select variables and estimate regression coefficients. We show that the resulting SCAD estimators are consistent and possess the oracle property. Subsequently, we demonstrate that a proposed tuning parameter selector, BIC, identifies the true model consistently. Finally, we develop a linear hypothesis test for the parametric coefficients and a goodness-of-fit test for the nonparametric component, respectively. Monte Carlo studies are also presented.
منابع مشابه
Generalized Partially Linear Single-Index Models
The typical generalized linear model for a regression of a response Y on predictors (X;Z) has conditional mean function based upon a linear combination of (X;Z). We generalize these models to have a nonparametric component, replacing the linear combination T 0 X + T 0 Z by 0( T 0 X) + T 0 Z, where 0( ) is an unknown function. We call these generalized partially linear single-index models (GPLSI...
متن کاملVariance function partially linear single-index models
We consider heteroscedastic regression models where the mean function is a partially linear single-index model and the variance function depends on a generalized partially linear single-index model.We do not insist that the variance function depends only on the mean function, as happens in the classical generalized partially linear single-index model.We develop efficient and practical estimatio...
متن کاملLocal influence analysis for penalized Gaussian likelihood estimation in partially linear single-index models
Single-index model is a potentially tool for multivariate nonparametric regression, generalizes both the generalized linear models(GLM) and the missing-link function problem in GLM. In this paper, we extend Cook’s local influence analysis to the penalized Gaussian likelihood estimator based on P-spline for the partially linear single-index model. Some influence measures, based on the minor pert...
متن کاملEstimation in Partially Linear Single-Index Panel Data Models with Fixed Effects
In this paper, we consider semiparametric estimation in a partially linear single– index panel data model with fixed effects. Without taking the difference explicitly, we propose using a semiparametric minimum average variance estimation (SMAVE) based on a dummy–variable method to remove the fixed effects and obtain consistent estimators for both the parameters and the unknown link function. As...
متن کاملNonparametric Estimation of a Generalized Additive Model with an Unknown Link Function
This paper is concerned with estimating the mean of a random variable Y conditional on a vector of covariates X under weak assumptions about the form of the conditional mean function. Fully nonparametric estimation is usually unattractive when X is multidimensional because estimation precision decreases rapidly as the dimension of X increases. This problem can be overcome by using dimension red...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of statistics
دوره 38 6 شماره
صفحات -
تاریخ انتشار 2010