Nonparametric estimation of a convex bathtub-shaped hazard function.
نویسندگان
چکیده
In this paper, we study the nonparametric maximum likelihood estimator (MLE) of a convex hazard function. We show that the MLE is consistent and converges at a local rate of n(2/5) at points x(0) where the true hazard function is positive and strictly convex. Moreover, we establish the pointwise asymptotic distribution theory of our estimator under these same assumptions. One notable feature of the nonparametric MLE studied here is that no arbitrary choice of tuning parameter (or complicated data-adaptive selection of the tuning parameter) is required.
منابع مشابه
Computation of Nonparametric Convex Hazard Estimators via Profile Methods Technical Report 542 Department of Statistics, University of Washington
Abstract. In this paper we develop an algorithm to find the maximum likelihood estimator of a convex hazard function. The maximization is done in two steps. First, we use the support reduction algorithm of [GJW1] to find the profile likelihood over a constrained space. We next show that (−1) times the profile likelihood is bathtub-shaped in the parameters, and use a bisection algorithm to find ...
متن کاملThe discrete additive Weibull distribution: A bathtub-shaped hazard for discontinuous failure data
Although failure data are usually treated as being continuous, they may have been collected in a discrete manner, or in fact be discrete in nature. Reliability models with bathtub-shaped hazard rate are fundamental to the concepts of burn-in and maintenance, but how well do they incorporate discrete data? We explore discrete versions of the additive Weibull distribution, which has the twin virt...
متن کاملThe Beta Gompertz Geometric distribution: Mathematical Properties and Applications
In this paper, a new five-parameter so-called Beta-Gompertz Geometric (BGG) distribution is introduced that can have a decreasing, increasing, and bathtub-shaped failure rate function depending on its parameters. Some mathematical properties of the this distribution, such as the density and hazard rate functions, moments, moment generating function, R and Shannon entropy, Bon...
متن کاملPower-Law Adjusted Failure-Time Models
A simple adjustment to parametric failure-time distributions, which allows for much greater flexibility in the shape of the hazard-rate function, is considered. Analytical expressions for the distributions of the power-law adjusted Weibull, gamma, log-gamma, generalized gamma, lognormal and Pareto distributions are given. Most of these allow for bathtub shaped and other multi-modal forms of the...
متن کاملA flexible parametric survival model which allows a bathtub shaped hazard rate function
A new parametric (3-parameter) survival distribution, the lognormal-power function distribution, with flexible behaviour is introduced. Its hazard rate function can be either unimodal, monotonically decreasing or can exhibit a bathtub shape. Special cases include the lognormal distribution and the power function distribution, with finite support. Regions of parameter space where the various for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability
دوره 15 4 شماره
صفحات -
تاریخ انتشار 2009