A comparison of the effects of IAA and 4-Cl-IAA on growth, proton secretion and membrane potential in maize coleoptile segments.
نویسندگان
چکیده
The physiological activity of exogenous 4-Cl-IAA, as compared to IAA, was examined in maize coleoptile segments. It was found that in this model system 4-Cl-IAA is much more active in the stimulation of elongation than IAA. Simultaneous measurements of growth and external pH indicated that administration of either IAA or 4-Cl-IAA resulted in medium acidification. The kinetics of the pH changes, however, were faster after the addition of 4-Cl-IAA. In contrast to IAA, the coleoptile segments treated with chlorinated auxin were not able to increase medium pH after its initial drop. The re-addition of IAA after 5 h further enhanced growth over the next 2 h by 31%. By contrast, the re-addition of 4-Cl-IAA at the same time protocol as IAA did not cause an additional effect. The administration of 10 microM IAA induced in maize coleoptile cells a transient depolarization followed by a slow hyperpolarization of their membrane potential. In contrast to IAA, 4-Cl-IAA at 1 microM caused an immediate hyperpolarization of the membrane potential which, on average, was 2-fold greater than for IAA. The results reported here provide further evidence that 4-Cl-IAA is much more active, as compared to IAA, in stimulating the growth of maize coleoptile segments. Although it has not been directly demonstrated here, a plausible interpretation for the high 4-Cl-IAA activity is that, at least in part, it might be caused via a reduced metabolism of 4-Cl-IAA. Furthermore, for the first time, the data show that membrane potential responds to 4-Cl-IAA in a qualitatively different fashion than to IAA. These findings may, in turn, suggest a specific signal transduction pathway to 4-Cl-IAA in maize coleoptile cells.
منابع مشابه
Effect of K+ and Ca2+ on the indole-3-acetic acid- and fusicoccin-induced growth and membrane potential in maize coleoptile cells
The role of potassium (K(+)) and calcium (Ca(2+)) in the regulation of plant growth and development is complex and needs a diverse range of physiological studies. Both elements are essential for satisfactory crop production. Here, the effects of K(+) and Ca(2+) ions on endogenous growth and growth in the presence of either indole-3-acetic acid (IAA) or fusicoccin (FC) were studied in maize (Zea...
متن کاملDetermination of Auxin-Dependent pH Changes in Coleoptile Cell Walls by a Null-Point Method.
The present debate on the validity of the "acid-growth theory" of auxin (indole-3-acetic acid, IAA) action concentrates on the question of whether IAA-induced proton excretion into the cell wall is quantitatively sufficient to provide the shift in pH that is required to explain IAA-induced growth (see D.L. Rayle, R.E. Cleland [1992] Plant Physiol 99:1271-1274 for a recent apologetic review of t...
متن کاملEffect of Indole-3-acetic Acid on Membrane Potentials of Oat Coleoptile Cells.
This paper reports an effect of indole-3-acetic acid on cell membrane potentials. Solutions with increasing IAA concentrations (from 109 to 10-7 M) make membrane potentials of coleop-tile cells more negative. This effect of IAA, which occurs at concentrations that also stimulate tissue elongation, was found inadvertently in the course of an experiment on the effect of IAA on cell wall potential...
متن کاملSources of Free IAA in the Mesocotyl of Etiolated Maize Seedlings.
Sources of free indole-3-acetic acid (IAA) for the mesocotyl of intact etiolized maize ((Zea mays L.) seedlings are evaluated. The coleoptile unit, which includes the primary leaves and the coleoptilar node, is the main source of free IAA for the mesocotyl. The seed and the roots are not immediate sources of IAA supply. Dependence of the apical growing region of the mesocotyl on the coleoptile ...
متن کاملRapid Hormone-induced Hyperpolarization of the Oat Coleoptile Transmembrane Potential.
The effects of the plant growth substances indoleacetic acid (IAA) and fusicoccin on the transmembrane potential of Avena coleoptile cells (at 27-29 C) were studied. Fusicoccin caused hyperpolarization of the membrane potential which started after a lag of less than 20 seconds, and which on average reached -49 mv at an external K(+) concentration of 1 mm and -75 mv at 0.1 mm K(+). IAA caused a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 53 371 شماره
صفحات -
تاریخ انتشار 2002