Waveguide Plasmon Resonance of Arrayed Metallic Nanostructures Patterned on a Soft Substrate by Direct Contact Printing Lithography
نویسندگان
چکیده
This paper presents a direct contact printing method to obtain arrayed metallic nanostructures on a soft polymer substrate. It utilizes a polydimethylsiloxane (PDMS) mold replicated from silicon molds to transfer metallic nanopatterns onto a polymer substrate based on differences in interfacial bonding energy. Arrayed metallic nanodisks with a disk diameter down to 180 nm and a center-to-center pitch around 400 nm are experimentally patterned on a PET substrate. The patterned metallic nanostructures are then spin-coated with a polymer layer; which mechanically secures the patterned nanostructures and optically allows waveguide plasmon resonance being excited by incident EM waves. Both experimental works and theoretical modeling are given to illustrate the behaviors of different types of plasmon resonance. These arrayed metallic nanostructures patterned on a soft polymer substrate and their tunable optical characteristics open up many possibilities in future engineering applications.
منابع مشابه
Printing meets lithography: Soft approaches to high-resolution patterning
We are developing a high-resolution printing technique based on transferring a pattern from an elastomeric stamp to a solid substrate by conformal contact. This is an attempt to enhance the accuracy of classical printing to a precision comparable with optical lithography, creating a low-cost, large-area, high-resolution patterning process. First, we introduce the components of this technique, c...
متن کاملProfile Controlled Gold Nanostructures Fabricated by Nanosphere Lithography for Localized Surface Plasmon Resonance
Localized surface plasmon resonance (LSPR) is the coherent oscillation of conductive electrons confined in noble metallic nanoparticles excited by electromagnetic radiation, and nanosphere lithography (NSL) is one of the cost-effective methods to fabricate metal nanostructures for LSPR. NSL can be categorized into two major groups: dispersed NSL and closely pack NSL. In recent years, gold nanoc...
متن کاملNanostencil and InkJet Printing for Bionanotechnology Applications
In this contribution we describe the application of Ink-Jet printing and Stencil Lithography in bionanotechnology. Both techniques are alternative patterning methods that can be used for the fabrication of biocompatible microand nanostructures out of the costly and restricted clean room environment. The applications presented in this contribution are 1) the cell patterning using Au dot arrays d...
متن کاملDual-Band Evanescent-Mode Substrate Integrated Waveguide Band-pass Filter for WLAN Applications
A new multi-layer substrate integrated waveguide (SIW) structure is developed to design dual-band evanescent-mode band-pass filters (BPFs). Two independent series LC circuits are implemented by incorporating metallic irises in the different layers of the structure. The combination of the metallic irises with capacitive-plates is embedded inside the SIW to independently excite two evane...
متن کاملLarge area high density sub-20 nm SiO(2) nanostructures fabricated by block copolymer template for nanoimprint lithography.
We developed simple fabrication methods to effectively transfer the block copolymer nanopatterns to a substrate material. High aspect ratio, sub-20 nm nanopillar and nanohole structures are successfully fabricated in a SiO(2) layer in large area format, and the versatile utilities of these nanostructures as nanoimprint molds are studied. Nanoimprint lithography using these molds makes it possib...
متن کامل