Poisson trees, succession lines and coalescing random walks
نویسندگان
چکیده
We give a deterministic algorithm to construct a graph with no loops (a tree or a forest) whose vertices are the points of a d-dimensional stationary Poisson process S ⊂Rd . The algorithm is independent of the origin of coordinates. We show that (1) the graph has one topological end – that is, from any point there is exactly one infinite self-avoiding path; (2) the graph has a unique connected component if d = 2 and d = 3 (a tree) and it has infinitely many components if d 4 (a forest); (3) in d = 2 and d = 3 we construct a bijection between the points of the Poisson process and Z using the preorder-traversal algorithm. To construct the graph we interpret each point in S as a space-time point (x, r) ∈Rd−1 ×R. Then a (d − 1)-dimensional random walk in continuous time continuous space starts at site x at time r . The first jump of the walk is to point x′, at time r ′ > r , (x′, r ′) ∈ S, where r ′ is the minimal time after r such that |x − x′|< 1. All the walks jumping to x′ at time r ′ coalesce with the one starting at (x′, r ′). Calling (x′, r ′)= α(x, r), the graph has vertex set S and edges {(s,α(s)), s ∈ S}. This enables us to shift the origin of S◦ = S ∪ {0} (the Palm version of S) to another point in such a way that the distribution of S◦ does not change (to any point if d = 2 and d = 3; point-stationarity). 2004 Elsevier SAS. All rights reserved. Résumé Nous présentons un algorithme déterministe pour construire un graphe sans boucles (un arbre ou une forêt) dont les sommets sont les points d’un processus de Poisson stationnaire S ⊂ Rd . L’algorithme est indépendant de l’origine des coordonnées. Nous démontrons que (1) le graphe a une fin topologique – c’est à dire, que de n’importe quel point il existe exactement un seul chemin sans intersections ; (2) le graphe a une seule composante connexe pour d = 2 et d = 3 (un arbre) et il a un nombre infini de composantes pour d 4 (une forêt) ; (3) pour d = 2 et d = 3, nous construisons une bijection entre les points du processus de Poisson et Z en utilisant l’algorithme “preorder-traversal”. Pour construire le graphe, nous interprétons chaque point de S comme un point spatio-temporel (x, r) ∈ Rd−1 × R. Une marche aléatoire (d − 1)-dimensionelle en temps continu commence du site x à l’instant r . Le premier saut de la marche est vers le point x′ à l’instant r ′ > r , (x′, r ′) ∈ S où r ′ est le premier instant après r tel que |x − x′| < 1. Toutes les marches qui sautent vers x′ à l’instant r ′ s’unissent à la marche débutant en (x′, r ′) pour devenir une seule marche aléatoire. Si (x′, r ′)= α(x, r), l’ensemble S représente les sommets du graphe et l’ensemble {(s,α(s)), s ∈ S} les arêtes. Ceci nous permet E-mail addresses: [email protected] (P.A. Ferrari), [email protected] (C. Landim), [email protected] (H. Thorisson). URLs: http://www.ime.usp.br/~pablo (P.A. Ferrari), http://www.impa.br/Pesquisadores/Claudio/ (C. Landim), http://www.hi.is/~hermann/ (H. Thorisson). 0246-0203/$ – see front matter 2004 Elsevier SAS. All rights reserved. doi:10.1016/j.anihpb.2003.12.001 142 P.A. Ferrari et al. / Ann. I. H. Poincaré – PR 40 (2004) 141–152 de translater l’origine de S◦ = S ∪ {0} (la version de Palm de S) vers un autre point de manière a ce que la distribution de S◦ reste inchangée. 2004 Elsevier SAS. All rights reserved.
منابع مشابه
ec 2 00 3 POISSON TREES , SUCCESSION LINES AND COALESCING RANDOM WALKS
We give a deterministic algorithm to construct a graph with no loops (a tree or a forest) whose vertices are the points of a d-dimensional stationary Poisson process S ⊂ R d. The algorithm is independent of the origin of coordinates. We show that (1) the graph has one topological end —that is, from any point there is exactly one infinite self-avoiding path; (2) the graph has a unique connected ...
متن کاملBalls–in–boxes Duality for Coalescing Random Walks and Coalescing Brownian Motions
We present a duality relation between two systems of coalescing random walks and an analogous duality relation between two systems of coalescing Brownian motions. Our results extends previous work in the literature and we apply it to the study of a system of coalescing Brownian motions with Poisson immigration.
متن کامل2 1 O ct 2 00 3 Two - dimensional Poisson Trees converge to the Brownian web
The Brownian web can be roughly described as a family of coalescing onedimensional Brownian motions starting at all times in R and at all points of R. It was introduced by Arratia; a variant was then studied by Tóth and Werner; another variant was analyzed recently by Fontes, Isopi, Newman and Ravishankar. The two-dimensional Poisson tree is a family of continuous time one-dimensional random wa...
متن کاملTwo-dimensional Poisson Trees converge to the Brownian web
The Brownian web can be roughly described as a family of coalescing one-dimensional Brownian motions starting at all times in R and at all points of R. The two-dimensional Poisson tree is a family of continuous time one-dimensional random walks with uniform jumps in a bounded interval. The walks start at the space–time points of a homogeneous Poisson process in R2 and are in fact constructed as...
متن کاملConvergence of coalescing nonsimple random walks to the Brownian web
The Brownian Web (BW) is a family of coalescing Brownian motions starting from every point in space and time R×R. It was first introduced by Arratia, and later analyzed in detail by Tóth and Werner. More recently, Fontes, Isopi, Newman and Ravishankar (FINR) gave a characterization of the BW, and general convergence criteria allowing in principle either crossing or noncrossing paths, which they...
متن کاملA pr 2 00 3 Two - dimensional Poisson Trees converge to the Brownian web
The two-dimensional Poisson tree is a family of continuous time one-dimensional random walks with bounded uniform jumps in R. The walks start at the space-time points of a homogeneous Poisson process in R and are in fact constructed as a function of the point process. This tree was introduced by Ferrari, Landim and Thorisson. The Brownian web can be roughly described as a family of coalescing o...
متن کامل