Genetic mechanisms underlying apimaysin and maysin synthesis and corn earworm antibiosis in maize (Zea mays L.).

نویسندگان

  • E A Lee
  • P F Byrne
  • M D McMullen
  • M E Snook
  • B R Wiseman
  • N W Widstrom
  • E H Coe
چکیده

C-glycosyl flavones in maize silks confer resistance (i.e., antibiosis) to corn earworm (Helicoverpa zea [Boddie]) larvae and are distinguished by their B-ring substitutions, with maysin and apimaysin being the di- and monohydroxy B-ring forms, respectively. Herein, we examine the genetic mechanisms underlying the synthesis of maysin and apimaysin and the corresponding effects on corn earworm larval growth. Using an F2 population, we found a quantitative trait locus (QTL), rem1, which accounted for 55.3% of the phenotypic variance for maysin, and a QTL, pr1, which explained 64.7% of the phenotypic variance for apimaysin. The maysin QTL did not affect apimaysin synthesis, and the apimaysin QTL did not affect maysin synthesis, suggesting that the synthesis of these closely related compounds occurs independently. The two QTLs, rem1 and pr1, were involved in a significant epistatic interaction for total flavones, suggesting that a ceiling exists governing the total possible amount of C-glycosyl flavone. The maysin and apimaysin QTLs were significant QTLs for corn earworm antibiosis, accounting for 14. 1% (rem1) and 14.7% (pr1) of the phenotypic variation. An additional QTL, represented by umc85 on the short arm of chromosome 6, affected antibiosis (R2 = 15.2%), but did not affect the synthesis of the C-glycosyl flavones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The genetic basis of C-glycosyl flavone B-ring modification in maize (Zea mays L.) silks.

Resistance to corn earworm (CEW) (Helicoverpa zea Boddie) has been attributed to high concentrations of C-glycosyl flavones and chlorogenic acid in maize (Zea mays L.) silks. The most common C-glycosyl flavones isolated from maize silks are maysin, apimaysin, and methoxymaysin, which are distinguished by their B-ring substitutions. For a better understanding of the genetic mechanisms underlying...

متن کامل

Quantitative trait loci and metabolic pathways (Zea mays L.yf lavonoidyf lavoneyinsect resistanceyHelicoverpa zea)

The interpretation of quantitative trait locus (QTL) studies is limited by the lack of information on metabolic pathways leading to most economic traits. Inferences about the roles of the underlying genes with a pathway or the nature of their interaction with other loci are generally not possible. An exception is resistance to the corn earworm Helicoverpa zea (Boddie) in maize (Zea mays L.) bec...

متن کامل

Restriction fragment length polymorphism markers associated with silk maysin, antibiosis to corn earworm (Lepidoptera: Noctuidae) larvae, in a dent and sweet corn cross.

Maysin, a C-glycosylflavone in maize silk, has insecticidal activity against corn earworm, Helicoverpa zea (Boddie), larvae. Sweet corn, Zea mays L., is a vulnerable crop to ear-feeding insects and requires pesticide protection from ear damage. This study was conducted to identify maize chromosome regions associated with silk maysin concentration and eventually to transfer and develop high silk...

متن کامل

Transformation of maize with the p1 transcription factor directs production of silk maysin, a corn earworm resistance factor, in concordance with a hierarchy of floral organ pigmentation.

The maize p1 gene encodes an R2R3-MYB transcription factor that controls the biosynthesis of red flavonoid pigments in floral tissues of the maize plant. Genetic and quantitative trait locus analyses have also associated the p1 gene with the synthesis of maysin, a flavone glycoside from maize silks that confers natural resistance to corn earworm. Here, we show directly that the p1 gene induces ...

متن کامل

Field screening of experimental corn hybrids and inbred lines for multiple ear-feeding insect resistance.

Identifying and using native insect resistance genes is the core of integrated pest management. In this study, 10 experimental corn, Zea mays L., hybrids and 10 inbred lines were screened for resistance to major ear-feeding insects in the southeastern Coastal Plain region of the United States during 2004 and 2005. Ear-feeding insect damage was assessed at harvest by visual damage rating for the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 149 4  شماره 

صفحات  -

تاریخ انتشار 1998