Microbial community structure and dynamics in anaerobic fluidized‐bed and granular sludge‐bed reactors: influence of operational temperature and reactor configuration
نویسندگان
چکیده
Methanogenic community structure and dynamics were investigated in two different, replicated anaerobic wastewater treatment reactor configurations [inverted fluidized bed (IFB) and expanded granular sludge bed (EGSB)] treating synthetic dairy wastewater, during operating temperature transitions from 37°C to 25°C, and from 25°C to 15°C, over a 430-day trial. Non-metric multidimensional scaling (NMS) and moving-window analyses, based on quantitative real-time PCR data, along with denaturing gradient gel electrophoresis (DGGE) profiling, demonstrated that the methanogenic communities developed in a different manner in these reactor configurations. A comparable level of performance was recorded for both systems at 37°C and 25°C, but a more dynamic and diverse microbial community in the IFB reactors supported better stability and adaptative capacity towards low temperature operation. The emergence and maintenance of particular bacterial genotypes (phylum Firmicutes and Bacteroidetes) was associated with efficient protein hydrolysis in the IFB, while protein hydrolysis was inefficient in the EGSB. A significant community shift from a Methanobacteriales and Methanosaetaceae towards a Methanomicrobiales-predominated community was demonstrated during operation at 15°C in both reactor configurations.
منابع مشابه
SHOW et al: DESIGN OF BIOREACTORS FOR BIOHYDROGEN PRODUCTION
Using dark fermentation, hydrogen can be generated from renewable organics including waste materials. Key to successful application of anaerobic fermentation is to uncouple liquid and biomass retention times in reactor system. This paper reviews reactor configurations (fixed-bed, fluidized-bed, upflow anaerobic sludge blanket and continuous stirred tank reactors) and operating processes (batch,...
متن کاملThe role of inoculum and reactor configuration for microbial community composition and dynamics in mainstream partial nitritation anammox reactors
Implementation of partial nitritation anammox (PNA) in the mainstream (municipal wastewater treatment) is still under investigation. Microbial community structure and reactor type can influence the performance of PNA reactor; yet, little is known about the role of the community composition of the inoculum and the reactor configuration under mainstream conditions. Therefore, this study investiga...
متن کاملBiofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates
This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent) or form flocs/aggregates (also called granules) without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densi...
متن کاملThe effect of operational conditions on the hydrodynamic characteristics of the sludge bed in UASB reactors.
This work aims to evaluate the hydrodynamic properties of the sludge bed of Upflow Anaerobic Sludge Blanket (UASB) reactors based on its settleability and expansion characteristics. The methodologies used for the evaluation of the settleability of aerobic activated sludge, and for the expansibility of a sludge bed of Expanded Granular Sludge Bed reactors and Fluidised Bed Reactors were adapted ...
متن کاملA mathematical model for a hybrid anaerobic reactor.
A mathematical model for a hybrid anaerobic reactor (HAR), which uses self-immobilized anaerobic bacterial granules under completely fluidized condition, has been developed. Stoichiometry of glucose fermentation into methane has been considered in this model. The model includes: (1) a biofilm model which describes substrate conversion kinetics within a single granule; (2) a bed fluidization mod...
متن کامل