Two extensions of the Shapley value for cooperative games

نویسندگان

  • Theo S. H. Driessen
  • Daniël Paulusma
چکیده

Two extensions of the Shapley value are given. First we consider a probabilistic framework in which certain consistent allocation rules such as the Shapley value are characterized. The second generalization of the Shapley value is an extension to the structure of posets by means of a recursive form. In the latter setting, the Shapley value for quasi-concave games is shown to be a core-allocation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cooperative Benefit and Cost Games under Fairness Concerns

Solution concepts in cooperative games are based on either cost games or benefit games. Although cost games and benefit games are strategically equivalent, that is not the case in general for solution concepts. Motivated by this important observation, a new property called invariance property with respect to benefit/cost allocation is introduced in this paper. Since such a property can be regar...

متن کامل

A TRANSITION FROM TWO-PERSON ZERO-SUM GAMES TO COOPERATIVE GAMES WITH FUZZY PAYOFFS

In this paper, we deal with games with fuzzy payoffs. We proved that players who are playing a zero-sum game with fuzzy payoffs against Nature are able to increase their joint payoff, and hence their individual payoffs by cooperating. It is shown that, a cooperative game with the fuzzy characteristic function can be constructed via the optimal game values of the zero-sum games with fuzzy payoff...

متن کامل

Alternative Axiomatic Characterizations of the Grey Shapley Value

The Shapley value, one of the most common solution concepts of cooperative game theory is defined and axiomatically characterized in different game-theoretic models. Certainly, the Shapley value can be used in interesting sharing cost/reward problems in the Operations Research area such as connection, routing, scheduling, production and inventory situations. In this paper, we focus on the Shapl...

متن کامل

Fast Algorithms for Game-Theoretic Centrality Measures

In this dissertation, we analyze the computational properties of game-theoretic centrality measures. The key idea behind game-theoretic approach to network analysis is to treat nodes as players in a cooperative game, where the value of each coalition of nodes is determined by certain graph properties. Next, the centrality of any individual node is determined by a chosen game-theoretic solution ...

متن کامل

Steady Marginality: A Uniform Approach to Shapley Value for Games with Externalities

The Shapley value is one of the most important solution concepts in cooperative game theory. In coalitional games without externalities, it allows to compute a unique payoff division that meets certain desirable fairness axioms. However, in many realistic applications where externalities are present, Shapley’s axioms fail to indicate such a unique division. Consequently, there are many extensio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Meth. of OR

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2001