Prediction of protein secondary structure by mining structural fragment database.

نویسندگان

  • Haitao Cheng
  • Taner Z Sen
  • Andrzej Kloczkowski
  • Dimitris Margaritis
  • Robert L Jernigan
چکیده

A new method for predicting protein secondary structure from amino acid sequence has been developed. The method is based on multiple sequence alignment of the query sequence with all other sequences with known structure from the protein data bank (PDB) by using BLAST. The fragments of the alignments belonging to proteins from the PBD are then used for further analysis. We have studied various schemes of assigning weights for matching segments and calculated normalized scores to predict one of the three secondary structures: α-helix, β-sheet, or coil. We applied several artificial intelligence techniques: decision trees (DT), neural networks (NN) and support vector machines (SVM) to improve the accuracy of predictions and found that SVM gave the best performance. Preliminary data show that combining the fragment mining approach with GOR V (Kloczkowski et al, Proteins 49 (2002) 154-166) for regions of low sequence similarity improves the prediction accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Consensus Data Mining (CDM) Protein Secondary Structure Prediction Server: Combining GOR V and Fragment Database Mining (FDM)

One of the challenges in protein secondary structure prediction is to overcome the cross-validated 80% prediction accuracy barrier. Here, we propose a novel approach to surpass this barrier. Instead of using a single algorithm that relies on a limited data set for training, we combine two complementary methods having different strengths: Fragment Database Mining (FDM) and GOR V. FDM harnesses t...

متن کامل

A Consensus Data Mining secondary structure prediction by combining GOR V and Fragment Database Mining.

The major aim of tertiary structure prediction is to obtain protein models with the highest possible accuracy. Fold recognition, homology modeling, and de novo prediction methods typically use predicted secondary structures as input, and all of these methods may significantly benefit from more accurate secondary structure predictions. Although there are many different secondary structure predic...

متن کامل

Combining evolutionary and structural information for local protein structure prediction.

We study the effects of various factors in representing and combining evolutionary and structural information for local protein structural prediction based on fragment selection. We prepare databases of fragments from a set of non-redundant protein domains. For each fragment, evolutionary information is derived from homologous sequences and represented as estimated effective counts and frequenc...

متن کامل

Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches

DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...

متن کامل

A permissive secondary structure-guided superposition tool for clustering of protein fragments toward protein structure prediction via fragment assembly

MOTIVATION Secondary-Structure Guided Superposition tool (SSGS) is a permissive secondary structure-based algorithm for matching of protein structures and in particular their fragments. The algorithm was developed towards protein structure prediction via fragment assembly. RESULTS In a fragment-based structural prediction scheme, a protein sequence is cut into building blocks (BBs). The BBs a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Polymer

دوره 46 12  شماره 

صفحات  -

تاریخ انتشار 2005