Evaluation of Water Use Efficiency Derived from MODIS Products against Eddy Variance Measurements in China
نویسندگان
چکیده
Water use efficiency (WUE) is a useful indicator to illustrate the interaction of carbon and water cycles in terrestrial ecosystems. MODIS gross primary production (GPP) and evapotranspiration (ET) products have been used to analyze the spatial and temporal patterns of WUE and their relationships with environmental factors at regional and global scales. Although MODIS GPP and ET products have been evaluated using eddy covariance flux measurements, the accuracy of WUE estimated from MODIS products has not been well quantified. In this paper, we evaluated WUE estimated from MODIS GPP and ET products against eddy covariance measurements of GPP and ET during 2003–2008 at eight sites of the Chinese flux observation and research network (ChinaFLUX) and conducted sensitivity analysis to investigate the possible key contributors to the bias of MODIS products. Results show that MODIS products underestimate eight-day water use efficiency in four forest ecosystems and one cropland ecosystem with the bias from −0.36–−2.28 g·C·kg−1 H2O, while overestimating it in three grassland ecosystems with the bias from 0.26–1.11 g·C·kg−1 H2O. Mean annual WUE was underestimated by 14%–54% at four forest sites, 45% at one OPEN ACCESS Remote Sens. 2015, 7 11184 cropland site and 7% at an alpine grassland site, but overestimated by 66% and 9% at a temperate grassland site and an alpine meadow site, respectively. The underestimation of WUE by MODIS data results from underestimated GPP and overestimated ET at four forest sites, while MODIS WUE values are significantly overvalued mainly due to underestimated ET in the three grassland ecosystems. The maximum light use efficiency and fraction of photosynthetically-active radiation (FPAR) were the two most sensitive factors to the estimation of WUE derived from the MODIS GPP and ET algorithms. The error in meteorological data partly caused the overestimation of ET and accordingly underestimation in WUE in subtropical and tropical forests. The bias of MODIS-produced WUE was also derived from the uncertainties in eddy flux data due to gap-filling processes and unbalanced surface energy issue. Their contributions to the uncertainty in estimated WUE at both eight-day and annual scales still need to be further quantified.
منابع مشابه
Remotely Monitoring Ecosystem Water Use Efficiency of Grassland and Cropland in China's Arid and Semi-Arid Regions with MODIS Data
Scarce water resources are available in the arid and semi-arid areas of Northwest China, where significant water-related challenges will be faced in the coming decades. Quantitative evaluations of the spatio-temporal dynamics in ecosystem water use efficiency (WUE), as well as the underlying environmental controls, are crucial for predicting future climate change impacts on ecosystem carbon-wat...
متن کاملEvaluation of MODIS Gross Primary Production across Multiple Biomes in China Using Eddy Covariance Flux Data
MOD17A2 provides near real-time estimates of gross primary production (GPP) globally. In this study, MOD17A2 GPP was evaluated using eddy covariance (EC) flux measurements at eight sites in five various biome types across China. The sensitivity of MOD17A2 to meteorological data and leaf area index/fractional photosynthetically active radiation (LAI/FPAR) products were examined by introducing si...
متن کاملThe Performances of MODIS-GPP and -ET Products in China and Their Sensitivity to Input Data (FPAR/LAI)
The aims are to validate and assess the performances of MODIS gross primary production (MODIS-GPP) and evapotranspiration (MODIS-ET) products in China’s different land cover types and their sensitivity to remote sensing input data. In this study, MODIS-GPP and -ET are evaluated using flux derived/measured data from eight sites of ChinaFLUX. Results show that MODIS-GPP generally underestimates G...
متن کاملEvaluation of the Latest MODIS GPP Products across Multiple Biomes Using Global Eddy Covariance Flux Data
The latest MODIS GPP (gross primary productivity) product, MOD17A2H, has great advantages over the previous version, MOD17A2, because the resolution increased from 1000 m to 500 m. In this study, MOD17A2H GPP was assessed using the latest eddy covariance (EC) flux data (FLUXNET2015 Dataset) at eighteen sites in six ecosystems across the globe. The sensitivity of MOD17A2H GPP to the meteorology ...
متن کاملEffects of climate change on water use efficiency in rain-fed plants
Water use efficiency (WUE) reflects the coupling of the carbon and water cycles and is an effective integral trait for assessing the responses of vegetated ecosystems to climate change. In this study, field experiments were performed to examine leaf WUE (WUEleaf) in response to changes in CO2 concentration and other environmental variables, including soil moisture and air temperature. We al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 7 شماره
صفحات -
تاریخ انتشار 2015